RESEARCH ARTICLE

Nanopore long reads enable the first complete genome assembly of a Malaysian *Vibrio parahaemolyticus* isolate bearing the pVa plasmid associated with acute hepatopancreatic necrosis disease [version 1; peer review: 1 approved with reservations, 1 not approved]

Han Ming Gan, Christopher M Austin

1Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3220, Australia
2Deakin Genomics Centre, Deakin University, Geelong, Victoria, 3220, Australia
3School of Science, Monash University Malaysia, Petaling Jaya, Selangor, 47500, Malaysia

Abstract

Background: The genome of *Vibrio parahaemolyticus* MVP1, isolated from a Malaysian aquaculture farm with shrimp acute hepatopancreatic necrosis disease (AHPND), was previously sequenced using Illumina MiSeq and assembled de novo, producing a relatively fragmented assembly. Despite identifying the binary toxin genes in the MVP1 draft genome that were linked to AHPND, the toxin genes were localized on a very small contig precluding proper analysis of gene neighbourhood.

Methods: The genome of MVP1 was sequenced on Nanopore MinION to obtain long reads to improve genome contiguity. *De novo* genome assembly was performed using long-read only assembler followed by genome polishing and hybrid assembler.

Results: Long-read assembly produced three complete circular MVP1 contigs: chromosome 1, chromosome 2 and the pVa plasmid encoding *pir*AB binary toxin genes. Polishing of the long-read assembly with Illumina short reads was necessary to remove indel errors. Complete assembly of the pVa plasmid could not be achieved using Illumina reads due to identical repetitive elements flanking the binary toxin genes leading to multiple contigs. These regions were fully spanned by the Nanopore long-reads resulting in a single contig. Alignment of Illumina reads to the complete genome assembly indicated there is sequencing bias as read depth was lowest in low-GC genomic regions. Comparative genomic analysis revealed a gene cluster coding for additional insecticidal toxins in chromosome 2 of MVP1 that may further contribute to host pathogenesis pending functional validation. Scanning of publicly available *V. parahaemolyticus* genomes revealed the presence of a single AinS-family quorum-sensing system that can be targeted for future microbial management.

Conclusions: We generated the first chromosome-scale genome assembly of a Malaysian isolate.

Open Peer Review

Invited Reviewers

<table>
<thead>
<tr>
<th>Invited Reviewers</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ballamoole Krishna Kumar , Nitte University Center for Science Education and Research (NUCSER), Mangalore, India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Tomoo Sawabe, Hokkaido University, Hakodate, Japan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any reports and responses or comments on the article can be found at the end of the article.
assembly of a Malaysian pirAB

Structural variations identified from comparative genomic analysis provide new insights into the genomic features of V. parahaemolyticus MVP1 that may be associated with host colonization and pathogenicity.

Keywords
Vibrio parahaemolyticus, Nanopore, Illumina, quorum-sensing, shrimp, Acute Hepatopancreatic Necrosis Disease

This article is included in the Nanopore Analysis gateway.

Corresponding author: Han Ming Gan (han.gan@deakin.edu.au)

Author roles: Gan HM: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Software, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Austin CM: Funding Acquisition, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2019 Gan HM and Austin CM. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Gan HM and Austin CM. Nanopore long reads enable the first complete genome assembly of a Malaysian Vibrio parahaemolyticus isolate bearing the pVa plasmid associated with acute hepatopancreatic necrosis disease [version 1; peer review: 1 approved with reservations, 1 not approved] F1000Research 2019, 8:2108 (https://doi.org/10.12688/f1000research.21570.1)

First published: 16 Dec 2019, 8:2108 (https://doi.org/10.12688/f1000research.21570.1)
Introduction

Vibrio parahaemolyticus is a marine gram-negative Enterobacteriaceae that has been recognized as an important pathogen affecting commercially-relevant shrimp species such as the giant tiger prawn (*Peneaus monodon*) and the Pacific white shrimp (*Litopenaeus vannamei*)\(^4\). In recent years, *V. parahaemolyticus* has been linked to acute hepatopancreatic necrosis disease (AHPND)\(^5\). An AHPND-causing *V. parahaemolyticus* isolate is thought to produce a homolog of the insecticidal *Photobacterium* insect-related (Pir) binary toxin that induces prolonged damage to the shrimp tissue\(^6\). AHPND preferentially affects shrimp post-larvae or juveniles with nearly 100% mortality rate within 30–35 days post-stocking\(^7\). Studies suggest that AHPND originated from China in 2009 and subsequently spread to South East Asia\(^8\). In Malaysia, AHPND was first reported in 2011 where it still persists in shrimp farms\(^9\).

The implementation of effective microbial management in aquaculture requires genomic surveillance data that can provide accurate information regarding the geographical origin, virulence factors and antibiotic resistance of a sequenced microbial strain\(^9\). In Malaysia, this remains challenging due to the paucity of available genomic resources for the relevant pathogens. To date, a majority of the microbial genomic studies in Malaysia consist of single draft genome reports mostly focusing on clinical pathogens without substantial comparative genomics\(^10\). However, recent years have seen a modest increase in the number of studies with more comprehensive sequencing data set and analysis\(^11\). For example, Yan et al. sequenced and assembled the draft genomes of 40 Malaysian *V. parahaemolyticus* isolates associated with shrimp aquaculture and performed comparative genomics of more than Asian 100 *V. parahaemolyticus* genomes from public databases. *In-silico* multi-locus sequencing typing and phylogenomic analyses indicate that several Malaysian *V. parahaemolyticus* isolates belong to previously undescribed sequence types and genomic lineages\(^11\) and recommended further studies be undertaken.

The *pirAB*\(^\text{\textregistered}\) genes coding for AHPND-causing binary toxins are localized on a 70-kb pVA plasmid\(^4\). Surprisingly, despite the small size of the plasmid relative to the chromosomal genome, a complete *de novo* assembly of the pVA plasmid using Illumina-only short reads has not been achieved to date. Recent studies suggested that this is due to the presence of repetitive elements on the pVA plasmid that are longer than the Illumina read length\(^10\). As a result, *pirAB*-containing contigs that were assembled from Illumina reads are generally short with limited gene content, precluding detailed analysis of the *pirAB* gene neighborhood and their stability in the plasmidome\(^10\). *V. parahaemolyticus* isolate MVP1 is one of the first *pirAB*-harboring *V. parahaemolyticus* isolated from Malaysia to have its genome sequenced\(^11\). Isolate MVP1 was previously sequenced on an Illumina MiSeq followed by *de novo* genome assembly using the SPAdes assembler. While the *pirAB*\(^\text{\textregistered}\) genes could be identified in the draft genome, the assembly was problematic as these were localized on a short contig flanked by small fragments of a transposase gene.

Recent years have seen the democratization of long-read sequencing enabled by Nanopore technology. In contrast to another popular long-read sequencing platform, PacBio, Nanopore sequencing requires minimal lab footprint and very low capital investment. Importantly, it is the first sequencing technology that allows native sequencing, thus eliminating sequencing bias associated with the activity of *Taq*-polymerase. Long reads have been utilized for *de novo* genome assembly in two distinct ways. First, long reads can be used directly in genome assembly followed by polishing with Illumina short reads to improve consensus accuracy\(^20\). An alternative approach utilizes long-reads to reorder and link contigs that were initially assembled from Illumina reads\(^21\). While the final assembly produced with this hybrid approach is highly accurate, the contiguity of the assembly is dependent on the quality of the initial Illumina assembly\(^22\).

Leveraging on the availability of Illumina dataset for isolate MVP1, we aimed to improve on the original genome assembly\(^11\) through the addition of 40× Nanopore read coverage. We first performed a Nanopore-led assembly using the long-read Flye assembler\(^4\) followed by polishing with Illumina reads. In addition, we generated a hybrid assembly using Unicycler assembler\(^23\). Although both methods produced a complete circular pVA plasmid sequence with intact *pirAB*\(^\text{\textregistered}\), complete chromosome assembly was only achieved with the Nanopore-led Flye assembly. This superior assembly provides new insight into the genomic features of *V. parahaemolyticus* MVP1 and will allow a greater understanding of host pathogenicity through comparative genomic analysis with selected *V. parahaemolyticus* isolates.

Methods

Nanopore sequencing

Sample collection, gDNA isolation and Illumina sequencing of *V. parahaemolyticus* isolate MVP1 have been previously reported\(^11\). For Nanopore sequencing, 1 μg of unfragmented gDNA was processed using the now obsolete Nanopore SQK-NSK007 library preparation kit. Sequencing was subsequently performed on an R9 flowcell attached to a MinION device for 48 hours. Base-calling of the produced raw fast5 files used Guppy v3.1 (high accuracy mode; requires registration to Oxford Nanopore Technology community site).

De novo genome assembly and genome polishing

Illumina-only assembly and hybrid assembly incorporating high-quality (q>7) Nanopore long reads were performed using Unicycler v0.4.7\(^21\). Only contigs equal or larger than 1,000 bp were retained for subsequent analyses. A long-read only *de novo* assembly was also performed with Flye v2.4.2 utilizing similar Nanopore sequencing data\(^24\). Illumina polishing of the Flye assembly used the unicycler polish tool in Unicycler v0.4.7 that performed multiple rounds of bwa-mem-based Illumina read alignment to the assembly followed by polishing with Pilon v1.22\(^25\). Genome completeness was assessed with BUSCO v3 (Gammaproteobacteria od9) based on the whole proteome from each genome assembly that was predicted using Prodigal v 2.6.3 (default setting)\(^26\).
Comparative Genomic analysis and protein homology modeling

Automated annotation of the whole-genome was carried out using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP)\(^9\). The translated coding sequences generated from PGAP were subject to additional functional annotation using InterProScan. Intra-chromosomal structural variations and sequence similarity were visualized with BLAST ring image generator (BRIG) using the blastN (e-value = 0.001 cutoff). Sequencing depth was also calculated in BRIG based on the BAM alignment file generated from the bwa-mem mapping of Illumina paired-end reads to the whole-genome\(^9\). Structural modeling of the putative insecticidal toxin proteins identified in MVP1 used the online Phyre2 webserver\(^9\).

Identification and phylogenetic analysis of LuxM, OpaM and AinS proteins

Vibrio proteins containing the InterPro signature IPR035304, corresponding to the AinS-family N-acyl-homoserine-lactone autoinducer synthase, were downloaded from the UniProt database\(^1\) on the 7th of November 2019 and clustered at 98% amino acid identity cutoff using cd-hit v4.6\(^2\). The protein clusters were subsequently aligned with MAFFT v7.31\(^3\) ("--maxiterate 1000 –localpair" setting) followed by maximum likelihood tree construction using FastTree v2.1\(^4\). Calculation and visualization of pairwise protein sequence divergence used SDT v1.2\(^2\). In addition, to confirm the absence of the LuxI-type autoinducer synthase homolog in the *Vibrio parahaemolyticus* proteomes, additional domain search specifically for PF00765 (LuxI autoinducer synthase domain) was performed followed by subsequent InterProScan validation as previously described\(^9\).

Results and discussion

Chromosomal assembly enabled by Nanopore long reads

A total of 231 megabases of Nanopore data contained in 30,315 reads (N50 = 10,908 bp) were produced from a single Nanopore MINION run on the discontinued R9 flowcell. The base-called Nanopore fastq file has been deposited in the SRA database under the accession code SRX6759854. An initial Unicycler assembly using previously generated Illumina reads (SRX6759853) yielded a relatively fragmented genome (198 contigs; N50 length = 54,109 bp). Supplementing the assembler with approximately 40 x coverage of Nanopore long reads led to a substantial improvement in the Unicycler assembly contiguity (9 contigs; N50 length = 1,738,848 bp). Of the 9 assembled contigs, one of them was flagged as “complete” with a contig length of 70kb. On the other hand, the Flye assembly using only Nanopore reads produced three contigs all flagged as “complete and circular". Despite generating the most contiguous assembly, the initial Flye assembly has the worst BUSCO score with 37.4% BUSCO single-copy and 45.1% fragmented BUSCO genes (Table 1). Polishing of the Flye assembly with Illumina paired-end reads restored the genome completeness to a level that is comparable to the hybrid and Illumina-only assemblies (Table 1 and Extended data: Supplemental File 1). The high percentage of fragmented genes in long-read-only assembly is usually a result of erroneous frameshifts from indel sequencing errors in the long reads\(^5\). Although higher coverage of long read may lead to an increase the consensus accuracy; its accuracy will unlikely match that of an Illumina-polished assembly due to Nanopore-specific systematic errors. As a result, polishing of long-read assembly using Illumina short reads can be considered as a cost-effective but less convenient approach for producing highly accurate and contiguous microbial genome assembly.

<table>
<thead>
<tr>
<th>Assembler (input data)</th>
<th>Genome Length (bp)</th>
<th>GC%</th>
<th># contigs N50 (bp)</th>
<th>BUSCO (gammaproteobacteria_odb9, n=452)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flye (Nanopore)</td>
<td>5,405,284</td>
<td>45.23%</td>
<td>3</td>
<td>3,456,517</td>
</tr>
<tr>
<td>Flye+Pilon (Nanopore+Illumina)</td>
<td>5,389,211</td>
<td>45.30%</td>
<td>3</td>
<td>3,446,010</td>
</tr>
<tr>
<td>Unicycler (Hybrid)</td>
<td>5,378,063</td>
<td>45.34%</td>
<td>9</td>
<td>1,738,848</td>
</tr>
<tr>
<td>Unicycler (Illumina)</td>
<td>5,167,326</td>
<td>45.47%</td>
<td>198</td>
<td>54,109</td>
</tr>
</tbody>
</table>

Reduced Illumina sequencing depth in several low-GC genomic regions

The alignments of Illumina reads to the final chromosomal assembly revealed substantial lower sequencing depths in genomic regions with low GC-content (<30%) (Figure 1). Some of these regions are unique to MVP1 and may risk being overlooked in the Illumina-only assembly at lower sequencing coverage. For example, less than 5x sequencing depth was observed in the region 3,240 to 3,280 kb that contain various putative carbohydrate metabolism genes that are unique to isolate MVP1 in this current genomic comparison. The incorporation of PCR during library preparation is known to reduce the representation of high-AT genomic regions due to the polymerase amplification bias towards GC-balanced fragments\(^6\). Reduced Illumina sequencing depth in high-AT genomic regions affecting biological interpretation has also been reported in several crustacean mitogenomic libraries as both the phylogenetically informative control region
and 16S rRNA genes are relatively AT-rich38,39. Depending on the amount of DNA available for sequencing, a few modifications to the Illumina library preparation step can be considered, such as PCR-free preparation for sample with high starting DNA (> 100 ng) and reduced PCR cycle coupled with higher (>100× genome coverage) sequencing depth for samples with low starting DNA.

Multiple localization of IS5 family transposase genes in the complete genomes of pVa-carrying \textit{Vibrio parahaemolyticus}

In the Illumina-only assembly, the pVa plasmid was assembled into three contigs (Contig24: 63.4 kb, Contig164: 3.4kb; Contig198: 1 kb). Contig198 contains a 921-bp gene that codes for an intact IS5 family transposase and could be aligned equally well to two genomic regions flanking the \textit{pirAB}\textsubscript{Vp} genes in the complete plasmid assembly (Figure 2). This observation can be explained by the inability of Illumina reads to fully span the repeats thus causing them to be collapsed into a single contig. As a result, the localization of \textit{pirAB}\textsubscript{Vp} on the pVa plasmid cannot be confirmed from an Illumina-only assembly. In contrast the entire \textit{pirAB}\textsubscript{Vp} genes and their flanking transposase genes were fully covered by a number of Nanopore long reads enabling the complete assembly of the pVa plasmid in addition to supporting the localization of \textit{pirAB}\textsubscript{Vp} genes on the pVa plasmid. Nanopore read depth compared to Illumina, is relatively even across the aligned genomic region, which is consistent with the absence of PCR bias in the Nanopore library preparation.

The minor structural variations previously reported in \textit{pirAB}\textsubscript{Vp}-containing region suggest that these genes are not stably maintained and are prone to transposition mediated by the flanking IS5 family transposase genes40. Interestingly, the localization of this IS5 family transposase gene is not specific to just the pVa plasmid. Local nucleotide similarity search of this transposase gene against the complete MVP genome revealed three additional perfect hits (100% query coverage and 100% nucleotide identity) in each of the chromosomal genome (Figure 1). The localization of these additional IS5 family transposase in both chromosome 1 and chromosome 2 further raises the possibility of the IS5 transposase-flanked \textit{pirAB}\textsubscript{Vp} genes being integrated into the chromosomal region41,42.

\textbf{Structural variations in the MVP1 genome}

Chromosome 2 of Isolate MPV1 consists of a 160 kb genomic region that is mostly absent in five out of six pVa plasmid-harboring \textit{V. parahaemolyticus} isolates included in this comparative genomic analysis. Functional annotation of the genes located in this region revealed two gene clusters that may
Figure 2. Alignment of Illumina-assembled contigs, Illumina and Nanopore reads to the annotated *Vibrio parahaemolyticus* MVP1 pVa plasmid sub-region containing the *pirAB* genes. Direction of arrow in the annotation indicates transcription orientation. Blue and red arrows in the Nanopore read alignment indicate forward and reverse strands, respectively.

Further contribute to host pathogenicity in addition to the binary Pir-like toxins on the pVa plasmid. The first gene cluster located from 1,822,499 to 1,836,895 bp in chromosome 2 consists of three relatively large genes (Gene Locus Tag: BSR23_26145, BSR23_26150 and BSR23_26155) coding for another type of putative insecticidal toxins. Functional annotation using InterProScan revealed the presence of protein domains commonly associated with the toxin-complex (Tc) toxins (Figure 3). In addition, Phyre2 protein modeling also indicated their high structural homology to their respective homologous toxin components (Extended data: Supplemental Files 2–4). In *Xenorhabdus nematophilus*, the three toxin components formed a native toxin complex and the ingestion of this complex led to growth inhibition of two different insect larvae, *Helicoverpa zea* and *Heliothis virescens*. In addition, further tests showed that the native toxin complex is capable of binding to solubilized gut membranes of *H. zea* larvae in addition to inducing pore formation in black lipid membranes. Given the functional resemblance of such toxins to the Pir-like binary toxins, the presence of all three genes coding for the complete set of insecticidal Tc toxins in *V. parahaemolyticus* may contribute to mortality without AHPND lesions in shrimps, as previously reported.

Interestingly, isolate MVP1 also harbor a *fuc* operon that is not commonly present in members of this species (Extended data: Supplemental Table 1). The presence of this operon in MVP1 translates into the genomic potential for the internalization of fucose for incorporation into the capsular polysaccharides or bacterial
glycoproteins. While it is also possible that the fuc operon may contribute to improved utilization of fucose as an energy source, Williams et al. did not observe a greater capacity to utilize fucose in an EMS-causing V. parahaemolyticus isolate 13-028/A3.

High prevalence and divergence of the LuxM/OpaM/AinS family autoinducer synthesis proteins among Vibrio spp

NCBI annotation of MVP1 proteome revealed the presence of only the LuxM/OpaM-type AHL synthase. An in-house HMMSearch for the LuxI autoinducer synthase domain (PFAM signature: PF00765) in the MVP1 proteome also did not reveal significant hits, indicating that MVP1 employs a single system for the biosynthesis of AHL signal (Extended Data: Supplemental File 5). Additional UniProt query search of “PF00765 AND Vibrio parahaemolyticus” on 14th November 2019, showed only one positive hit across all currently available V. parahaemolyticus proteomes. However, further investigation of the positive hit, AAY51_09590, revealed that this belonged to a Citrobacter spp. previously misclassified as V. parahaemolyticus. In contrast, V. harveyi was shown to utilize at least two quorum-sensing systems e.g. LuxI that synthesizes 3-oxo-C6-HSL and the AinS that synthesizes C8-HSL. Despite being classified as members of the same family for sharing the similar protein domain signature, AinS exhibited a substantially lower pairwise amino acid divergence (~ 30%) in comparison to LuxM and OpaM. By rooting the LuxM/OpaM phylogenetic tree with the AinS from Aliivibrio fischeri as the outgroup, we observed a strongly supported monophyletic cluster consisting of the functionally validated LuxM and OpaM in addition to their homologs from other Vibrio spp (Figure 4A). The pairwise amino acid identity among members in this LuxM/OpaM clade averages around 50% (Figure 4B), consistent with the relatively short branch length among members of the clade.

In Indian white shrimps (Fenneropenaeus indicus), co-injection of a pathogenic V. parahaemolyticus strain DHAP1 and purified recombinant AHL lactonase, AiiA, reduced Vibrio viable counts and biofilm development in the shrimp intestine, suggesting the role of AHL-mediated quorum-sensing system in host colonization. While the presence of intact opaM in several sequenced V. parahaemolyticus isolates supports their ability to accumulate AHL and engage in quorum-sensing activity, this is best validated using a simple biosensor or LC/MS approach that can not only verify the AHL producing phenotype but also provide insight into the structural diversity of AHL signals.

Furthermore, elucidating the role of opaM in mediating host colonization and pathogenesis among AHPND-causing V. parahaemolyticus via transposon mutagenesis will be instructive.
Figure 4. Phylogenetic analysis and sequence divergence of the AinS-like family proteins in *Vibrio* spp. (A) Maximum likelihood tree depicting the evolutionary relationships of AinS-like family protein clusters among *Vibrio* spp. Number after the “=” sign in each tip label indicates the number of proteins represented by the cluster. Node were colored according to the SH-like local support values and branch lengths indicate number of substitutions per site. (B) Pairwise identity matrix of the identified AinS-like family proteins in *Vibrio* spp.
Conclusions
Using approximately 40x genome coverage of Nanopore long reads, we produced the first chromosome-scale genome assembly of a Malaysian pirAB⁺-bearing *V. parahaemolyticus* isolate. Although the genome completeness of the initial Flye assembly was relatively poor, polishing of the genome assembly with Illumina reads improved its completeness to a level that is comparable to a high-quality microbial genome assembly. Structural variations identified from genomic comparisons provide new insights into the genomic features of *V. parahaemolyticus* MVP1 that may be associated with host colonization and pathogenicity.

Data availability

Underlying data

Vibrio parahaemolyticus strain MVP1 chromosome 1, complete sequence, Accession number CP043421: https://www.ncbi.nlm.nih.gov/nuccore/CP043421

Vibrio parahaemolyticus strain MVP1 chromosome 2, complete sequence, Accession number CP043422: https://www.ncbi.nlm.nih.gov/nuccore/CP043422

Vibrio parahaemolyticus strain MVP1 plasmid pVa, complete sequence, Accession number CP043423: https://www.ncbi.nlm.nih.gov/nuccore/CP043423

Raw Illumina reads and basecalled Nanopore Reads have also been deposited in NCBI Sequence Read Archive under the BioProject PRJNA355061.

References

Extended data

Zenodo: Nanopore long reads enable the first complete genome assembly of a Malaysian *Vibrio parahaemolyticus* isolate bearing the pVa plasmid associated with acute hepatopancreatic necrosis disease, http://doi.org/10.5281/zenodo.3568485². This project contains the following extended data:

- Supplemental File 1: Main genome assemblies (Unpolished Flye assembly, Polished Flye assembly, Unicycler Hybrid Assembly and Unicycler Illumina-only assembly) generated in this study for comparison and their BUSCO output.

- Supplemental File 2: Phyre2 protein modeling output of the putative MVP1 TcdA toxin

- Supplemental File 3: Phyre2 protein modeling output of the putative MVP1 TcdB toxin

- Supplemental File 4: Phyre2 protein modeling output of the putative MVP1 TccC toxin

- Supplemental File 5: InterProScan output of the NCBI-predicted MVP1 proteome.

- Supplemental Table 1: NCBI BlastN output using the *fuc* genes of *Vibrio parahaemolyticus* MVP1 as the query to search against the *Vibrio* reference WGS database as of 21 Oct 2019.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Open Peer Review

Current Peer Review Status: ❓ ❌

Version 1

Reviewer Report 10 March 2020

https://doi.org/10.5256/f1000research.23769.r60806

© 2020 Sawabe T. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tomoo Sawabe
Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan

AHPND is one of the important threats for the shrimp aquaculture industry to be prevented worldwide. The authors succeeded to have the complete genome of a Vibrio parahaemolyticus strain MVP1 isolated from a Malaysian aquaculture farm. The study is so important but studies on AHPND should be moved to studies on population dynamics based on complete genomes.

1. Nanopore and Illumina hybrid assemblies are available commercially. The cost-effective methodology can achieve dozens of strains to be sequenced completely. The current manuscript is likely to trace such published known reports. In this aspect, the manuscript is unlikely to be technically sound.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
No

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
No source data required

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.
I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I am a microbiologist working on vibrio pathogenesis.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com