Independent predictors of comprehensive knowledge of HIV in general population: findings from the Myanmar Demographic and Health Survey (2015-16) [version 1; peer review: 1 approved with reservations]

Kyaw Lwin Show 1, Hemant Deepak Shewade 2-4, Khine Wut Yee Kyaw 2,5, Khin Thet Wai 1, San Hone 6*, Htun Nyunt Oo 6*

1Department of Medical Research, Ministry of Health and Sports, Yangon, 11191, Myanmar
2Centre of Operational Research, International Union Against Tuberculosis and Lung Disease (The Union), Paris, 75006, France
3Department of Operational Research, The Union South-East Asia, New Delhi, 110016, India
4Karuna Trust, Bengaluru, Karnataka, 560041, India
5Department of Operational Research, The Union Myanmar Country Office, Mandalay, 05021, Myanmar
6National AIDS Programme, Ministry of Health and Sports, Nay Pyi Taw, 15011, Myanmar

* Equal contributors

Abstract

Background: Myanmar has the third highest number of people living with HIV in Southeast Asia behind Indonesia and Thailand. The independent predictors of comprehensive HIV knowledge among general population are not known.

Methods: In this nationally representative study, we adopted a cross-sectional design using secondary data from the Myanmar Demographic and Health Survey (2015-16). We included all women and men aged 15-49 years who participated in the survey. We have provided weighted estimates as the analyses were weighted for the multi-stage sampling design. We used modified Poisson regression with robust variance estimates model to identify independent predictors of comprehensive knowledge.

Results: Of 17,622 analyzed, 3,599 (20.4%, 95% CI: 19.7, 21.1) had comprehensive knowledge of HIV. Late adolescents, those with less than a high school education, those involved in agriculture and the poorest two quintiles were less likely to have comprehensive knowledge of HIV.

Conclusion: In Myanmar, comprehensive knowledge of HIV among the general population needs to be improved and we identified certain independent predictors that could be specifically targeted by the national programme.

Keywords

Cross sectional survey, demographic health survey, HIV AIDS knowledge, risk factors, SORT IT
This article is included in the TDR gateway.

Corresponding author: Kyaw Lwin Show (kyawlwins@gmail.com)

Author roles: Show KL: Conceptualization, Formal Analysis, Investigation, Methodology, Visualization, Writing – Original Draft Preparation; Shewade HD: Conceptualization, Formal Analysis, Methodology, Supervision, Writing – Review & Editing; Kyaw KWY: Conceptualization, Investigation, Methodology, Supervision, Writing – Review & Editing; Wai KT: Conceptualization, Methodology, Supervision, Writing – Review & Editing; Hone S: Conceptualization, Supervision, Writing – Review & Editing; Oo HN: Conceptualization, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This research was conducted through the Structured Operational Research and Training Initiative (SORT IT), a global partnership led by the Special Programme for Research and Training in Tropical Diseases at the World Health Organization (WHO/TDR). The model is based on a course developed jointly by the International Union Against Tuberculosis and Lung Disease (The Union) and Medecins Sans Frontieres (MSF/Doctors Without Borders). The specific SORT IT programme which resulted in this publication was jointly organized and implemented by The Centre for Operational Research, The Union, Paris, France; Department of Medical Research, Ministry of Health and Sports, Yangon; Department of Public Health, Ministry of Health and Sports, Nay Pyi Taw; The Union Country Office, Mandalay, Myanmar; The Union South-East Asia Office, New Delhi, India and London School of Hygiene and Tropical Medicine, London, UK. The training programme within which this paper was developed was funded by the Department for International Development (DFID), London, UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 World Health Organisation. This is an open access article distributed under the terms of the Creative Commons Attribution IGO License, which permits copying, adaptation and distribution in any medium or format for any purpose, provided the original work is properly cited, a link is provided to the license, and any changes made are indicated. Any such copying, adaptation and distribution must not in any way suggest that World Health Organisation endorses you or your use.

How to cite this article: Show KL, Shewade HD, Kyaw KWY et al. Independent predictors of comprehensive knowledge of HIV in general population: findings from the Myanmar Demographic and Health Survey (2015-16) [version 1; peer review: 1 approved with reservations] F1000Research 2020, 9:5 (https://doi.org/10.12688/f1000research.21627.1)

First published: 06 Jan 2020, 9:5 (https://doi.org/10.12688/f1000research.21627.1)
Introduction
Human immunodeficiency virus (HIV) infection is a global epidemic and is the second leading cause of death among infectious diseases after tuberculosis. During 2017, there were 1.8 million new infections, 37 million people living with HIV and nearly one million acquired immunodeficiency syndrome (AIDS) related deaths. The right knowledge and a positive attitude towards HIV along with awareness regarding availability of HIV counseling and testing services is a pre-requisite for meeting the first ‘90’ of the UNAIDS '90-90-90' targets: by 2020, 90% of people living with HIV should know their HIV status.

Myanmar has the third highest number of people living with HIV in Southeast Asia behind Indonesia and Thailand. In 2015, the prevalence of HIV among adults aged 15–49 years was 0.59%, and 53% of estimated people living with HIV knew their status. The focus of the national AIDS programme is on testing key populations, pregnant women (to reduce mother to child transmission), people with sexually transmitted infections, tuberculosis patients and prisoners. Among young men who have sex with men in Myanmar (2015), having good HIV related knowledge was associated with HIV testing.

In Uganda, four in ten women aged 15–49 years from the general population had comprehensive knowledge of HIV. The Myanmar Demographic and Health Survey (MDHS) 2015–16 reported that one in five respondents had comprehensive knowledge of HIV, three quarters were willing to care a family member with HIV/AIDS, and 29% were ever tested for HIV. The independent predictors of comprehensive HIV knowledge among the general population have not been analyzed or reported. Therefore, this study aimed to identify the factors associated with comprehensive of HIV knowledge among the general population. Understanding these will aid the programme in taking corrective actions and moving a step closer to attain the first ‘90’ target by 2020.

Methods
Study design and population
In this nationally representative study, we adopted a cross-sectional design using secondary data from the MDHS 2015–16. We included all women and men aged 15–49 years who participated in the survey.

Setting
The Republic of the Union of Myanmar is divided administratively into the Nay Pyi Taw council territory, seven states and seven regions. There are 74 districts and 330 townships. Geographically, states and regions have diversities of plains, delta and hilly regions. The population is over 51 million, of which nearly 70% reside in rural areas.

MDHS 2015–16
The sampling for MDHS 2015–16 was based on the 2014 census frame and excluded institutional populations (persons in hotels, barracks, and prisons) but included those from internally displaced population camps.

The survey followed a stratified two stage sample design. The first stage involved selecting clusters that were either a census enumeration area or ward/village tracts. Probability proportional to size sampling was used. Stratification was achieved by separating each state or region into urban and rural areas, each of which formed a separate sampling stratum. A total of 442 clusters (319 rural and 123 urban) were selected independently from total of 30 sampling strata (Figure 1). Second, using systematic random sampling, a fixed number of 30 households were sampled from each cluster. All men aged 15–49 years in every second selected household and all women aged 15–49 years in the selected households were interviewed using the pre-tested Myanmar language questionnaires. They were either residents or visitors who stayed the night before the survey. The response rate among women was 96% and men was 91%.

Comprehensive knowledge was considered as ‘yes’ if a person (i) knew about condom use and that limiting sexual intercourse to one partner could prevent HIV and (ii) knew that a healthy looking person could have HIV and (iii) rejected the two most common local misconceptions about the transmission of HIV, which in Myanmar were that HIV could be transmitted through mosquito bites and that a person could get infected with HIV by sharing food with someone who has AIDS.

All completed questionnaires were entered into the tablets by the field editors after they were edited on paper in the field. Data
were re-entered and validated by data processing personnel in Nay Pyi Taw using the CSPro computer package.

Data analysis
We analyzed the data extracted from MDHS 2015–16 using STATA (version 12.1 STATA Corp., College Station, TX, USA). We assessed comprehensive knowledge using proportions and 95% confidence intervals (CIs). In the multivariable model to identify independent predictors of comprehensive knowledge (predictive modelling), we used modified Poisson regression with robust variance estimates. We included age, sex and variables with a crude Chi square p-value of <0.2. Before including the variables in the model, we ruled out multicollinearity using variance inflation factor. We assessed the association between socio-economic and demographic factors and comprehensive knowledge (outcome) using adjusted prevalence ratios (aPR) and 95% CI. We first considered programmatically significant association if aPR was ≥1.5 or ≤0.67, and then looked for statistical significance (p<0.05) because MDHS 2015–16 had a large sample size.

We have provided weighted estimates as the analyses were weighted for the multi-stage sampling design. We used the probability of selection of clusters and households to derive the weights (inverse probability sampling).

Ethics approval
We obtained ethics approval from Ethics Review Committee, Department of Medical Research, Ministry of Health and Sports, Myanmar (Ethics/DMR/2018/163, dated 27 December 2018) and the Ethics Advisory Group of the International Union against Tuberculosis and Lung Disease (The Union), Paris, France (EAG number 38/18 dated 23 August 2018). This study uses existing DHS data and re-analysis was done under the original consent provided by the participants.

Results
A total of 17,622 respondents participated in the survey. Their mean age was 31.5 (standard deviation: 9.9) years, with 2,541 (14.4%) being late adolescents. A total of 4,737 (26.8%) were men, 2,181 (12.4%) had no formal education and 3,121 (17.7%) were involved in agriculture (Table 1).

Of 17,622 respondents, 3,599 (20.4%, 95% CI: 19.7, 21.1) had comprehensive knowledge of HIV. On unadjusted analysis,

<table>
<thead>
<tr>
<th>Factors</th>
<th>Total</th>
<th>Comprehensive knowledge</th>
<th>PR (95%CI)</th>
<th>aPR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>17622 (100.0)</td>
<td>3599 (20.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age in years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15–19</td>
<td>2541 (14.4)</td>
<td>347 (13.7)</td>
<td>0.60 (0.54, 0.67)</td>
<td>0.60 (0.52, 0.69)</td>
</tr>
<tr>
<td>20–29</td>
<td>5103 (29.0)</td>
<td>1125 (22.1)</td>
<td>0.97 (0.91, 1.05)</td>
<td>0.86 (0.79, 0.93)</td>
</tr>
<tr>
<td>30–39</td>
<td>5368 (30.4)</td>
<td>1216 (22.7)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>40–49</td>
<td>4610 (26.2)</td>
<td>911 (19.8)</td>
<td>0.87 (0.81, 0.94)</td>
<td>0.94 (0.87, 1.02)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4737 (26.9)</td>
<td>1055 (22.3)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>Female</td>
<td>12885 (73.1)</td>
<td>2544 (19.7)</td>
<td>0.89 (0.83, 0.94)</td>
<td>0.84 (0.78, 0.90)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No formal education</td>
<td>2181 (12.4)</td>
<td>55 (2.5)</td>
<td>0.04 (0.03, 0.05)</td>
<td>0.08 (0.06, 0.11)</td>
</tr>
<tr>
<td>Primary</td>
<td>6989 (39.7)</td>
<td>696 (9.9)</td>
<td>0.16 (0.15, 0.17)</td>
<td>0.28 (0.25, 0.31)</td>
</tr>
<tr>
<td>Secondary</td>
<td>6786 (38.5)</td>
<td>1817 (26.8)</td>
<td>0.43 (0.41, 0.46)</td>
<td>0.62 (0.57, 0.67)</td>
</tr>
<tr>
<td>High school and above</td>
<td>1664 (9.4)</td>
<td>1031 (61.9)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>Missing</td>
<td>2 (<0.1)</td>
<td>0 (0.0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta and lowland</td>
<td>7673 (43.5)</td>
<td>1867 (24.3)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>Hills</td>
<td>2673 (15.2)</td>
<td>402 (15.0)</td>
<td>0.62 (0.56, 0.68)</td>
<td>0.79 (0.71, 0.87)</td>
</tr>
<tr>
<td>Coastal</td>
<td>1385 (7.9)</td>
<td>198 (14.3)</td>
<td>0.59 (0.51, 0.67)</td>
<td>0.89 (0.80, 0.98)</td>
</tr>
<tr>
<td>Plains</td>
<td>5891 (33.4)</td>
<td>1132 (19.2)</td>
<td>0.79 (0.74, 0.84)</td>
<td>0.88 (0.81, 0.94)</td>
</tr>
</tbody>
</table>
Factors

<table>
<thead>
<tr>
<th>Factors</th>
<th>Total</th>
<th>Comprehensive knowledge</th>
<th>PR (95%CI)</th>
<th>aPR* (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (col %)</td>
<td>n (row %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place of residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>5119 (29.0)</td>
<td>1870 (36.5)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>Rural</td>
<td>12503 (71.0)</td>
<td>1729 (13.8)</td>
<td>0.38 (0.36, 0.40)</td>
<td>0.84 (0.78, 0.91)</td>
</tr>
<tr>
<td>Current marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never married</td>
<td>5924 (33.6)</td>
<td>1270 (21.4)</td>
<td>1.06 (0.99, 1.13)</td>
<td>0.86 (0.80, 0.92)</td>
</tr>
<tr>
<td>Married</td>
<td>10715 (60.8)</td>
<td>2160 (20.2)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>Widowed</td>
<td>453 (2.6)</td>
<td>79 (17.5)</td>
<td>0.87 (0.71, 1.06)</td>
<td>0.95 (0.77, 1.18)</td>
</tr>
<tr>
<td>Divorced</td>
<td>476 (2.7)</td>
<td>77 (16.2)</td>
<td>0.80 (0.65, 0.99)</td>
<td>0.90 (0.72, 1.12)</td>
</tr>
<tr>
<td>Separated</td>
<td>54 (0.3)</td>
<td>13 (23.0)</td>
<td>1.14 (0.70, 1.86)</td>
<td>1.26 (0.76, 2.08)</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not working and/or homemaker</td>
<td>3845 (21.8)</td>
<td>782 (20.3)</td>
<td>0.42 (0.39, 0.46)</td>
<td>0.80 (0.72, 0.89)</td>
</tr>
<tr>
<td>Agriculture</td>
<td>3120 (17.7)</td>
<td>350 (11.2)</td>
<td>0.23 (0.21, 0.26)</td>
<td>0.67 (0.58, 0.78)</td>
</tr>
<tr>
<td>Manual labor</td>
<td>6481 (36.8)</td>
<td>971 (15.0)</td>
<td>0.31 (0.29, 0.34)</td>
<td>0.76 (0.68, 0.84)</td>
</tr>
<tr>
<td>Clerical/sales/services</td>
<td>3092 (17.6)</td>
<td>981 (31.7)</td>
<td>0.66 (0.61, 0.71)</td>
<td>0.93 (0.85, 1.01)</td>
</tr>
<tr>
<td>Professional/technical/managerial</td>
<td>1045 (5.9)</td>
<td>504 (48.2)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>Missing</td>
<td>39 (0.2)</td>
<td>11 (28.9)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wealth quintile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First (poorest)</td>
<td>3165 (18.0)</td>
<td>167 (5.3)</td>
<td>0.13 (0.11, 0.15)</td>
<td>0.36 (0.30, 0.44)</td>
</tr>
<tr>
<td>Second</td>
<td>3324 (18.9)</td>
<td>351 (10.6)</td>
<td>0.26 (0.23, 0.29)</td>
<td>0.59 (0.51, 0.68)</td>
</tr>
<tr>
<td>Third</td>
<td>3612 (20.5)</td>
<td>578 (16.0)</td>
<td>0.39 (0.36, 0.42)</td>
<td>0.75 (0.67, 0.84)</td>
</tr>
<tr>
<td>Fourth</td>
<td>3688 (20.9)</td>
<td>927 (25.1)</td>
<td>0.61 (0.57, 0.65)</td>
<td>0.92 (0.85, 1.00)</td>
</tr>
<tr>
<td>Fifth</td>
<td>3833 (21.7)</td>
<td>1576 (41.1)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>Household size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>3584 (20.3)</td>
<td>818 (22.8)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>4-6</td>
<td>9856 (55.9)</td>
<td>1911 (19.4)</td>
<td>0.84 (0.79, 0.91)</td>
<td>0.94 (0.87, 1.01)</td>
</tr>
<tr>
<td>>6</td>
<td>4182 (23.8)</td>
<td>870 (20.8)</td>
<td>0.91 (0.84, 0.99)</td>
<td>0.93 (0.85, 1.02)</td>
</tr>
<tr>
<td>Moved in at this residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>within last one year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>423 (2.4)</td>
<td>111 (26.1)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>No</td>
<td>17198 (97.6)</td>
<td>3488 (20.3)</td>
<td>0.78 (0.66, 0.91)</td>
<td>0.99 (0.84, 1.18)</td>
</tr>
<tr>
<td>Missing</td>
<td>1 (<0.1)</td>
<td>0 (0.0)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

col %, column percentage; row %, row percentage; PR, prevalence ratio; aPR, adjusted prevalence ratio; CI, confidence interval; HIV, Human Immunodeficiency Virus.

*CComposite measure that a person (i) knows about condom use and limiting sexual intercourse to one partner can prevent HIV, and (ii) knows that a healthy looking person can have HIV, and (iii) rejects the two most common local misconceptions about the transmission of HIV, which in Myanmar are that HIV can be transmitted through mosquito bites and that a person can become infected with HIV by sharing food with someone who has AIDS.

*^Weighted estimates (for multistage survey design) for frequency, proportion and prevalence ratio.

*^We first considered programmatically significant association if aPR was ≥1.5 or ≤0.67, and then looked for statistical significance (p<0.05).

*^^Adjusted analysis using modified Poisson regression with robust variance estimates, 41 records with at least one variable missing were excluded from the adjusted analysis.
age, education, region, place of residence (urban or rural), occupation and wealth quintile were associated with comprehensive knowledge of HIV. On adjusted analysis, age, education, occupation and wealth quintile were identified as independent predictors.

When compared to adults aged 30–39 years, late adolescents were less likely to have comprehensive knowledge of HIV [aPR: 0.60 (95% CI: 0.52, 0.69)]. When compared to those educated to high school level and above, those educated less than high school level were less likely to have comprehensive knowledge, with those with no formal education being 92% less likely [aPR: 0.08 (95% CI: 0.06, 0.11)]. In addition, those involved in agriculture and belonging to the poorest two quintiles were less likely to have comprehensive knowledge (Table 1).

Discussion
This study from Myanmar investigating the predictors of comprehensive knowledge of HIV among the general population had two strengths. First, we used data from a nationally representative survey. Second, the data were robust as double data entry and validation was done. There were some limitations as well. The study population might include some key affected population that could influence the true prevalence among general population. Residual confounding cannot not be ruled out.

Comprehensive knowledge about HIV in the general population was relatively low and this was prominent among late adolescents. This finding is supported by studies from Nigeria (2013) and Democratic Republic of Congo (2013)\(^\text{10}\). Young people including late adolescents are particularly vulnerable because of high risk sexual behavior and substance use. They lack access to accurate and personalized HIV information and prevention services\(^\text{11}\).

Comprehensive HIV knowledge among those with no formal education was poor. Similar results were also found among Indonesian women (2012)\(^\text{12}\). This might be linked to not having access to information that is usually available as part of the curriculum and academic activities, resulting in a better understanding of HIV. Moreover, wealth was also a factor that influenced comprehensive knowledge of HIV. People belonging to the poorest two quintiles had poor comprehensive knowledge of HIV, similar to the findings from the Nigerian Demographic and Health Survey (2013)\(^\text{13}\). Accessing or learning health information could be minimal for those of the poorest quintiles as they might need to engage more with daily work for their living.

There is a need to target late adolescents and this is possible through school health services. In 2017, the Ministry of Health and Sports issued standardized health messages in the local language for basic health staff. By using these, health promotion activities at the community level should specially be targeted towards late adolescents and socioeconomically disadvantaged people with no formal education.

In conclusion, comprehensive knowledge of HIV among the general population needs to be improved in Myanmar and we identified certain independent predictors that could be specifically targeted. Further translational health education research should be done on the possible knowledge transfer mechanism for these sub-groups.

Data availability
Underlying data
The underlying data for this study is owned by the DHS Program (https://www.dhsprogram.com/data/dataset/Myanmar_Standard-DHS_2016.cfm?flag=0). The electronic data is available from the DHS Program under its terms of use (https://dhsprogram.com/Data/terms-of-use.cfm). Before downloading the data, users must register as a DHS user for reasons laid out on the DHS Program website (https://www.dhsprogram.com/data/Registration-Rationale.cfm) and dataset access is only granted for legitimate research purposes.

References

Open Peer Review

Current Peer Review Status:

Version 1

Reviewer Report 21 April 2020

https://doi.org/10.5256/f1000research.23839.r61622

© 2020 Richards A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Adam K. Richards
Community Partners International, Berkeley, CA, USA

This brief report uses data from the 2015-2016 Myanmar DHS to explore factors related to “comprehensive HIV knowledge” in the general Myanmar population. The authors should make it clear that the crude estimates presented in Table 1 combine the sex-specific tables from the full Myanmar DHS report (table1 13.3.1 for women and 13.3.2 for men); the modest novelty of the manuscript as currently written lies in the results modelled in a multivariate analysis of these independent variables.

My sense is that the manuscript could be strengthened by making several modest changes as outlined below.

Introduction
First paragraph: it is not at all clear that “the right knowledge and a positive attitude towards HIV… is a pre-requisite… [to meet the 90-90-90 goals]… at least when the definition of HIV knowledge is the one used by the DHS/in this manuscript. It is not unreasonable to propose that at least some of the knowledge domains (specifically, the ‘misperceptions’) may be less relevant when it comes to actual risk behaviors, care-seeking, adherence, stigma etc etc. [see below for additional discussion]

Outcome
The authors should consider presenting results using knowledge of “HIV prevention measures” as an alternative, or perhaps secondary outcome.

I appreciate that the definition of ‘comprehensive HIV knowledge’ that is applied in other DHS surveys (and is comprised of four elements: one partner/condoms prevent HIV; PLWHA can be healthy; and 2 misconceptions NOT endorsed) though it is worth noting that most DHS surveys also present results for a subset comprised of the first two of the four items in the comprehensive knowledge, often referred to as ‘HIV prevention measures.’ It would be useful to use this alternative definition, given the somewhat tenuous link between the misconceptions and HIV outcomes of commonly accepted value. Numerous studies demonstrate how individuals are capable of holding multiple beliefs about the etiology of disease while maintaining overall excellent adherence to risk behaviors, testing and treatment. For example, it is possible for TB patients in Bolivia to believe that traditional healers play a valuable role in the treatment of
tuberculosis, but this belief does not impede their ability to seek out testing for TB and to strictly adhere to DOT (as long as structural barriers are addressed to enable access to care, payment for testing and treatment etc) – see An Ethnography of Nonadherence: Culture, Poverty, and Tuberculosis in Urban Bolivia. Jeremy A. Greene. *Culture, Medicine and Psychiatry* volume 28, pages 401–425(2004).1 As the authors likely are aware, it is not uncommon in Myanmar for rural villagers to believe that malaria can be transmitted by eating papaya (or other fruits)… but this does not interfere with their excellent care seeking behavior and adherence to treatment – as evidenced by the impressive results of the large village malaria worker initiatives that have dramatically reduced transmission in endemic areas of Myanmar. Stated more directly, there is a very real chance that it does not matter much whether or not someone believes HIV might be related to mosquitoes or food… as long as they also know that HIV is associated with real risk behaviors (unprotected sex; sharing needles etc), and that their practices align with lower risk behaviors.

I am not aware of studies demonstrating that misconceptions about HIV (specifically, mosquitoes and sharing food) meaningfully influence HIV risk behaviors, uptake of testing or treatment, HIV-related stigma or other meaningful outcome. If the authors are aware of such studies the might cite them as part of their choice to use the DHS definition of “comprehensive HIV knowledge” over alternative options that carry at least as much meaning – such as knowledge of HIV prevention messages.

I appreciate that knowledge related to PMTCT of HIV is not the specific emphasis of this brief report. Nonetheless, it is arguably at least as important an indicator of HIV related knowledge in the general population – as the authors themselves imply in the introduction. (that is, HIV knowledge about the importance of limiting sex partners, condom use etc. is MUCH more valuable among key pops and perhaps migrants than it is among the general population; whereas every woman (and their male partners) who might get pregnant should be aware of HIV testing and treatment during pregnancy.

Exposures
The DHS includes questions related to media exposure (print, radio and television; and these answers are often combined into a composite indicator), and it would be valuable to include this in the model, as it might suggest possible means by which the low knowledge of HIV in Myanmar might be ameliorated. The authors should either include one or more of these variables, or explain their choice to omit them.

Did the authors consider estimating knowledge among important subpopulations who can be classified using DHS data? Unfortunately, information on most high risk HIV behaviors is not available from the DHS, though it may be useful to document HIV knowledge among respondents who are: recently sexually active; reported an STI; engaged in payment for sex; or who lived in particular states/regions. For example, given the extremely high prevalence of HIV among PWID in Kachin and Shan (from the recent IBBS), as well as the relatively common practice of injection drug use in those Northern regions, it is not inconceivable that HIV will become a generalized epidemic in that area; and partners of PWID at are at especially high risk.

The lack of information on other HIV risk factors / key populations in the DHS (eg condom use; illicit injection history; same-sex-practices; migration history etc) is a limitation worth noting in the manuscript.

The model among adolescents likely should take advantage of the DHS variables specific to this group (ever attended school; attended school in the past year etc).

Statistical analysis
I appreciate and agree with the choice to present prevalence rate ratios (and not odds ratios). In the
setting of an outcome of modest prevalence, most would choose to use glm with a binomial distribution
and a log link function, and not a robust poisson regression. See for example
estimating prevalence ratios. 2008; 8: 92.
The results are unlikely to be qualitatively different using either method, though the authors might explain
their choice to the reader (or consider using glm with a binomial distribution)

Modelling choices
Stratification / separate models for adolescents
The authors appropriately note that HIV knowledge is especially low among adolescents, though it is less
clear why this might be the case. A reasonable a priori hypothesis is that the factors associated with HIV
knowledge among adolescents are quite different than risk factors among young/middle age adults.
[Some authors would even submit a separate manuscript J]. The authors should explain why they chose
to estimate a single model for both older adults as well as adolescents. If the authors first conducted
stratified analyses and observed similar associations; or if they formally explored the possible presence
of interactions between adolescent and older ages, then they should say so. If these were not done, then I
strongly encourage the authors to explore possible effect modification among adolescents, and to
comment on whether results appear similar.

Interactions
Did the authors consider exploring effect modification by other variables in addition to adolescent vs
adults? For example, are SES gradients of similar magnitude in urban and non-urban settings? A brief
comment on whether interactions were considered for other/any variables would be useful.

Supplementary analyses
As above, as currently presented the unique novel contribution made by this manuscript is a
multivariable/adjusted model. Most associations remain relatively similar in the adjusted model, and the
simple analysis sets a somewhat low bar for publication in a peer reviewed manuscript, even as a Brief
Report. It would be valuable to augment the manuscript with additional analysis that would require fairly
little effort. Here are two straightforward suggestions:

Predicted probabilities
For example, the authors could present absolute predicted probabilities of comprehensive knowledge (or
knowledge of HIV prevention practices) for different individuals who do and do not possess factors
associated with HIV knowledge: for example, the authors might report the probabilities of HIV knowledge
for residents of Myanmar who are:
 1. highest wealth quintile; high school or higher education; urban; professional
 2. poorest wealth quintile; no education; nonurban; agricultural worker
The authors might calculate predicted probabilities for two groups of adolescents; as well as two groups
of adults (4 calculations total. Margins facilitates calculation of the difference between predicted
probabilities, the standard error of that difference, confidence intervals etc though it may not be necessary
to report that, due to the very large magnitude of the difference apparent on presentation of the point
estimates.

What is the potential value of calculated predicted probabilities? First, it provides an intuitive presentation
of adjusted estimates on an absolute scale, which complements the information presented on a relative
scale (aPRR). Second, it helps to place the findings in context and more directly address several key
questions the current manuscript touches on only indirectly. One such question is whether
comprehensive knowledge is likely or possible, even when the most favorable conditions exist (ie could any combination of factors produce a predicted probability close to the UNGASS goal of 95% among adolescents?). In addition, presentation of predicted probabilities would create an even more stark contrast for disadvantages groups who comprise a large proportion of the population. This, in turn, might further highlight the important conclusion that efforts to improve HIV knowledge per se (via media, education etc) are unlikely to address the low overall HIV knowledge; and that improving HIV knowledge will require major development and social change. [see also the comment below related to school-based HIV education efforts –calculating predicted probabilities among adolescents who are advantaged in every way, including attendance at school, might provide a rough sense of the magnitude of the impact necessary to achieve targets set by UNGASS].

Predicted probabilities are easily accomplished in STATA using the ‘margins’ postestimation command (immediately after running the full model regression).

Summarize SES inequities using concentration index or similar health equity metric

The SES gradients (wealth and educational attainment) are very large, independent of each other, and not explained by observed variables in the model. Methods exist to summarize inequities in health outcomes using tools developed by others, such as the concentration index developed by the World Bank. User-written command concindex is available in STATA that facilitates calculation of the concentration index in the setting of complex survey such as the DHS (using the svy: prefix). I suggest that the authors report two relative CIs for HIV knowledge, using household wealth and educational attainment as the two respective ranking variables.

Discussion

The major finding was already known: that “comprehensive knowledge of HIV,” as defined by the DHS is low in Myanmar; and that the distribution of knowledge demonstrates stark patterning according to axes of power and advantage, such as wealth, education, occupation, urban residence etc. It likely is worth stating that adjusting for the factors included in the multivariable model had little influence on what was documented already (in the DHS report tables).

If the authors believe that the more strict definition of HIV knowledge (that requires respondents to correctly identify mosquitoes and food as NOT influencing risk of HIV) is in fact important, that it would be fair to say that an overall prevalence of 20.4% is extremely (abysmally?) low. If, however, they believe that in fact it is not crucial that the general population possesses the HIV knowledge specific to these questions, then it may be reasonable to describe this percentage in less stark terms: perhaps simply ‘low’ would suffice; I would avoid saying ‘relatively’ low, as this begs the question ‘relative to what’? the ideal? Other countries?

Absolute prevalence of comprehensive knowledge should be reported for each country compared to Myanmar (eg Nigeria, DRC and Uganda).

The adolescent figures can be placed in the context of the UNGASS goal to achieve comprehensive knowledge among 95% of adolescents. (!)

The SES gradients (wealth and educational attainment) are striking, independent, and are not explained by observed variables included in this model. This likely deserves greater emphasis.

Why single out “the poorest two quintiles” for having “poor comprehensive knowledge”… when only 41% possessed comprehensive knowledge even the highest wealth quintile? [hint: predictive margins may be useful here]

As above, it would be valuable to report a secondary outcome of the two HIV prevention methods, which results in a slightly higher prevalence 54% among women and 62% among men (p205 in the DHS). It
would be valuable to know whether or not the associations appear similar when this more common outcome is used in place of the stricter "comprehensive knowledge" outcome is used (the PRRs will likely be somewhat smaller in magnitude if the denominator/baseline value is larger, though this can be taken into account in your interpretation).

The manuscript might contrast HIV Knowledge in the general population with that reported among key populations (ie from the respective IBBS among PWID and FSW).

Given the concentration of HIV risk among key populations – that in Myanmar include migrants, as noted in the more recent strategic plans of MOHS/NAP – the authors could more explicitly state the value of reporting HIV knowledge among the general public. One way to do this is to highlight the emphasis of NAP on PMTCT, and make explicit that the women in the present analysis are women of reproductive age.

If a large number of children and adolescents do not attend school (attendance ratios are 83% for primary and only 60% among adolescents) then it is not clear how school-based HIV education would address the gap in HIV knowledge among this vulnerable group.

Addressing the massive SES gradients in HIV knowledge is an admirable goal, though it's not at all clear what a “targeted” approach might look like, or whether it makes much sense given the low knowledge overall, and in every subgroup presented – though calculating the predictive margins might help to highlight whether it would be reasonable to omit certain subgroups from a ‘targeted’ campaign.

Minor points

Introduction

The findings from Uganda belong in the discussion (along with DRC and Nigeria).

Methods: the paragraph that begins “Comprehensive knowledge was considered…” should read “present” [drop as ‘yes’]

Results: second paragraph -- repeating “17,622 respondents” is redundant

Figure 1 – I am not sure what is added by presenting the sampled clusters on a map, in the particular manuscript. Consider mapping the prevalence of the primary outcome of HIV knowledge. Since the crude prevalence of comprehensive knowledge by state/region is already provided in the DHS report (albeit separately for men and women, and in tabulated format); then the authors might present predicted probabilities ‘adjusted’ (standardized) for age, sex and nonurban residence…

References

Is the work clearly and accurately presented and does it cite the current literature? Yes

Is the study design appropriate and is the work technically sound? Partly

Are sufficient details of methods and analysis provided to allow replication by others? Yes
If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: epidemiology of infectious and chronic disease; design and analysis of complex surveys; health services research; health inequity

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com