RESEARCH ARTICLE

Accuracy of short tandem repeats genotyping tools in whole exome sequencing data [version 1; peer review: awaiting peer review]

Andreas Halman 1-4, Alicia Oshlack 1,2,5

1Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, 3052, Australia
2Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
3Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
4School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
5School of BioSciences, University of Melbourne, Parkville, VIC, 3052, Australia

Abstract

Background: Short tandem repeats are an important source of genetic variation. They are highly mutable and repeat expansions are associated with dozens of human disorders, such as Huntington's disease and spinocerebellar ataxias. Technical advantages in sequencing technology have made it possible to analyse these repeats at large scale; however, accurate genotyping is still a challenging task. We compared four different short tandem repeats genotyping tools on whole exome sequencing data to determine their genotyping performance and limits, which will aid other researchers in choosing a suitable tool and parameters for analysis.

Methods: The analysis was performed on the Simons Simplex Collection dataset, where we used a novel method of evaluation with accuracy determined by the rate of homozygous calls on the X chromosome of male samples. In total we analysed 433 samples and around a million genotypes for evaluating tools on whole exome sequencing data.

Results: We determined a relatively good performance of all tools when genotyping repeats of 3-6 bp in length, which could be improved with coverage and quality score filtering. However, genotyping homopolymers was challenging for all tools and a high error rate was present across different thresholds of coverage and quality scores. Interestingly, dinucleotide repeats displayed a high error rate as well, which was found to be mainly caused by the AC/TG repeats. Overall, LobSTR was able to make the most calls and was also the fastest tool, while RepeatSeq and HipSTR exhibited the lowest heterozygous error rate at low coverage.

Conclusions: All tools have different strengths and weaknesses and the choice may depend on the application. In this analysis we demonstrated the effect of using different filtering parameters and offered recommendations based on the trade-off between the best accuracy of genotyping and the highest number of calls.

Keywords
short tandem repeats, microsatellites, gangstr, lobstr, hipstr, repeatseq
Introduction
Overview of short tandem repeats (STRs) and methods of analysis

STRs, also known as microsatellites, consist of repeated units of 1 to 6 base pairs (bp) in length and cover about 3% of the human genome (Gymrek, 2017). STRs are highly mutable and often vary in their number of repeat units across the population. They can be found in various regions of the genome, including in or near protein coding regions and introns (Hannan, 2018). Expanded variants contribute to several dozen human disorders, including Huntington’s disease, fragile X syndrome, spinocerebellar ataxias and other diseases. In addition, variation in STR length has been shown to associate with quantitative traits such as gene expression (Gymrek, 2017). The standard method to genotype the length of STRs is to perform polymerase chain reaction (PCR) amplification on the region of interest and gel electrophoresis (Tang & Nzabarushimana, 2017). Sanger sequencing has high accuracy, but low throughput, limiting analysis to a few genes at a time (Caspar et al., 2018).

Recent technology advances in high-throughput sequencing (HTS) have revolutionised the genomics field and brought us the opportunity to detect sequence variants at a scale that was impossible before (Caspar et al., 2018). HTS of the whole genomes provides the potential to profile over a million STRs in the human genome. Recent advances in bioinformatics have brought us tools to analyse STRs from sequencing data (HTS), but genotyping still remains challenging for many reasons, including issues with extreme GC content, short read lengths that do not span over the entire repeat, and issues with alignment due to variation in STRs appearing as large insertions or deletions relative to the reference. In addition, using PCR amplification during library preparation will often cause stutter noise and produce artificial variability in the sequence (Caspar et al., 2018; Gymrek, 2017). Stutter noise is a result of in vitro slippage of DNA polymerase during PCR cycles that leads to erroneous reads of incorrect repeat length (Willems et al., 2014), which contributes to challenges in genotyping.

Illumina has developed a method for amplification-free (PCR−) library preparation (Kozarewa et al., 2009), which theoretically eliminates the STR stutter error during PCR amplification in sample preparation (PCR+) and therefore improves the accuracy of STR genotyping. The developers of STR-FM evaluated the new protocol by running their tool in both PCR− and PCR+ samples and found that the PCR− protocol compared to PCR+ has up to nine-fold fewer errors (Fungtammasan et al., 2015). However, huge amounts of sequencing data have already been generated by using the PCR+ protocol, where some data will not be resequenced due to time and/or cost (Fungtammasan et al., 2015). In addition, despite the advantages of whole genome sequencing (WGS), whole exome sequencing (WES) is still widely used in human genetics due to its lower cost and higher coverage and WES is a PCR+ process (Björn et al., 2018). Therefore, tools that can accurately genotype STRs not only from PCR− but also from PCR+ data are essential.

While there are a number of computational tools that have been developed to genotype STR alleles in HTS data, there have been few independent comparisons of their performance. Evaluation of methods for genotyping STRs is difficult. The gold standard measurement of STRs is by capillary electrophoresis (Willems et al., 2014), but these methods have low throughput. Further evaluations have used Mendelian inheritance as a measure of accuracy (Gymrek et al., 2012; Highnam et al., 2013; Mousavi et al., 2019). Other studies have used simulated data for the evaluation of genotyping accuracy (Fungtammasan et al., 2015; Highnam et al., 2013). While simulation can generate many loci with known alleles, it is difficult to simulate the true complexity of real data.

Here we propose to compare and evaluate STR genotyping methods on exome data using a different but complementary approach. We used the natural hemizygous state of the X chromosomes in males to look for incorrect calls revealed by a heterozygous call. With repeats on the X chromosome in males there is only one allele, so we expect all calls to be homozygous. While this approach does not evaluate the accuracy of the allele length, it has advantages in that (a) the data sets are large so we can test thousands of calls, and (b) the data comes from real patients with all the noise and biases found in real data.

In our study, we compared LobSTR (Gymrek et al., 2012), RepeatSeq (Highnam et al., 2013), HipSTR (Willems et al., 2017) and a recently published tool GangSTR (Mousavi et al., 2019). In addition, we included a common variant calling tool GATK HaplotypeCaller (McKenna et al., 2010) as a comparison of genotyping accuracy.

There are a number of tools that have been developed for STR analysis and which were excluded from this analysis. For example, popSTR (Kristmundsdóttir et al., 2017) is a population based STR genotyper and is optimised for whole genome sequencing (WGS) data. STRviper is another method for genotyping STRs that is able to pick up repeats longer than the read length; however, it has no built-in stutter model and it is not suitable for
diploid dataset as it assumes only one allele (Cao et al., 2014). Galaxy environment has an STR analysis tool called STR-FM which we were unable to run (Fungtammasan et al., 2015). Dante (Budiš et al., 2019) and STRSCan (Tang & Nzabarushimana, 2017) are designed for targeted searches and require a user-defined list of STR loci.

Tools such as Expansion Hunter (Dolzhenko et al., 2017; Dolzhenko et al., 2019), TREDPARSE (Tang et al., 2017), STRetch (Dashnow et al., 2018) and exSTRa (Tankard et al., 2018) were excluded from our analysis as well because they are classified as tools specifically looking for expansions that might be disease causing and are often longer than the physical read length or expansion relative to a control set.

Our analysis focuses on comparing the performance of STR genotyping tools on the X chromosome of more than 400 males. Using this data set, we investigate the overall ability of tools to call genotypes, the accuracy as a function of coverage and repeat unit and also investigate quality scores of the tools. We find most tools are able to call a majority of homozygous alleles and different tools have different advantages in terms of repeat unit and coverage.

Computational tools to genotype STRs from HTS data

First, we will give a short overview of STR genotyping tools included in our analysis and their reported accuracy. The tools evaluated in our analysis are summarised in Table 1. All of the tools require a set of defined STR loci. Tandem Repeats Finder (TRF) is a tool that can be used to detect STRs that have two or more copies of the same repeat unit in a row in the reference genome (Benson, 1999). In addition, it can detect repeats for which the repeat unit size is up to several hundred of bp long. Running TRF generates a report that includes all the loci detected in the genome, with genomic start and end location of the STR, repeat unit and its size, number of copies aligned with the consensus pattern and other relevant information. For this study, we limited the loci defined by TRF to repeat units up to 6 bp (see Methods).

LobSTR. LobSTR was one of the first successful STR genotyping tools for HTS data. It initially used its own inbuilt aligner but can also use data aligned with BWA-MEM (Li, 2013). LobSTR identifies reads that completely contain the STR and which also have flanking sequence with no repetitive sequence when aligned to a reference genome. As mentioned, PCR amplification during library preparation can create stutter noise at an STR locus, and LobSTR tackles this issue with an included stutter model that aims to detect and account for noise to improve genotyping accuracy. The stutter noise model used can be custom generated from the data or the standardised one supplied by the tool developers. As a result, LobSTR determines and reports the maximum likelihood estimates of the genotype in each locus (Gymrek et al., 2012).

LobSTR was validated using concordance of biological replicates (blood and saliva samples) from the same subject to measure the precision of the tool. At 21x coverage, the discordance rate for genotype was 3% and for allelotype was 2%. While for lower 5x coverage, the discordance rate for genotype was 11% and for allelotype was 5%. STR length differences were analysed in discordant calls that were heterozygous in both blood and saliva samples and found that at coverage 5x or higher, 90% of the errors were one repeat unit difference and 99% of errors were in 2 bp repeat unit size (Gymrek et al., 2012). However, it is important to note that LobSTR validated 2–6 bp repeat unit

Table 1. Feature comparison of short tandem repeats (STRs) specific genotyping tools used in our analysis.

<table>
<thead>
<tr>
<th>Feature</th>
<th>RepeatSeq</th>
<th>LobSTR</th>
<th>HipSTR</th>
<th>GangSTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latest version of the tool used in this study</td>
<td>0.8.2 (2014)</td>
<td>4.0.6 (2016)</td>
<td>0.6.2 (2018)</td>
<td>2.4 (2019)</td>
</tr>
<tr>
<td>Built-in stutter noise model</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ability to detect STRs that are longer than the read length</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Input file types</td>
<td>BAM</td>
<td>BAM FASTA FASTQ</td>
<td>BAM CRAM</td>
<td>BAM CRAM</td>
</tr>
<tr>
<td>Sequencing read types</td>
<td>Single- and paired-end reads</td>
<td>Single- and paired-end reads</td>
<td>Single- and paired-end reads</td>
<td>Paired-end reads</td>
</tr>
</tbody>
</table>
size STRs and did not validate homopolymers (Gymrek et al., 2012), which are common in the genome and a known source of genetic variation (Highnam et al., 2013).

RepeatSeq. RepeatSeq (Highnam et al., 2013) uses data aligned by an external tool, such as BWA or Bowtie. It uses Bayesian model selection to determine the most probable genotype and requires all reads to fully contain STRs and at least two reads at a locus to make a call. The RepeatSeq noise model is based on genomes derived from over 100 inbred isolates of fly.

RepeatSeq’s accuracy was evaluated by analysing a trio WGS data to test consistency with Mendelian inheritance. The authors reported that on minimum coverage of two, 92.1% of repeat calls were consistent with the Mendelian inheritance, while with a minimum coverage of nine it was 95.3% and on minimum coverage of 17 it was 98.0% (Highnam et al., 2013).

GangSTR. One of the major drawbacks of the first series of STR profiling methods was that they were limited to genotyping repeats within the read length in HTS data. GangSTR (Mousavi et al., 2019) is a more recent method that incorporates additional information besides repeat-enclosing reads to estimate the length of repeats. This includes available information such as fragment length, coverage and information about partially enclosing reads where only one end contains flanking sequence. More specifically, reads are divided into four classes: 1) enclosing read pairs that have at least one read that includes the whole STR and a flanking region in both ends; 2) spanning read pairs that have a mate pair where one read is aligned to one side of the STR and the second read of the pair on the other side; 3) flanking read pairs that include a read which partially extends into the STR region; and 4) fully repetitive read pairs that have one or two reads which are entirely made of STR (Mousavi et al., 2019). These four classes of reads are used to not only genotype repeats less than the read length but can also be used to genotype longer alleles such as repeat expansions.

The GangSTR method was evaluated by first simulating paired-end 150 bp reads (40x coverage) for 14 repeat expansions involved in STR disorders. Tool accuracy was measured by comparing true and observed alleles and also compared to TREDPARSE and ExpansionHunter. In this evaluation, GangSTR showed a lower root mean square error (RMSE) rate between true and observed allele lengths for all tested repeats. The authors demonstrated that GangSTR had an advantage over ExpansionHunter and TREDPARSE, especially in alleles that were close to the read length or longer. In addition, GangSTR and ExpansionHunter improved significantly with higher coverage and longer read length.

GangSTR genotyping for disease causing alleles was also tested on validated 14 Huntington’s Disease and 25 Fragile X Syndrome real PCR-free WGS data and they reported an RMSE (7.9 and 29.3, respectively) that was lower than for TREDPARSE (8.3 and 34.8, respectively) and ExpansionHunter (10.1 and 27.3, respectively). In evaluations of genotyping a WGS trio, GangSTR was found to have similar performance to HipSTR for shorter alleles (Mousavi et al., 2019).

HipSTR. HipSTR (Willems et al., 2017) is a haplotype-based method for genotyping, haplotyping and phasing STRs. While other STR tools are made for finding true length of repeats independently along the genome, HipSTR takes into account the whole repeat structure on the allele, which may also have missing data. HipSTR accuracy was tested by comparing calls from 118 PCR− WGS samples to capillary electrophoresis data, reporting about 98.8% consistency between the two datasets (Willems et al., 2017).

GATK HaplotypeCaller. GATK HaplotypeCaller (GATK-HC) (McKenna et al., 2010) can also be used for finding SNPs and indels in repeat regions, but it is not specifically made for STR analysis. It has been widely documented that indel calling is not as accurate as SNP calling and indel callers are not ideal for identifying STR mutation due to the lack of reporting repeat genotypes. Instead, indel callers report insertions or deletions of bases relative to the reference, which may or may not be a multiple of the repeat unit, as well as including SNP differences. Dedicated STR callers, however, use information about the repeat unit, composition and repeat length in order to make more accurate genotype calls (Highnam et al., 2013).

Results

In order to evaluate the accuracy and performance of STR genotyping methods, we used a novel evaluation approach applied to exome sequencing data of more than 430 individuals. Several previous comparisons determined accuracy by comparing the estimated lengths of repeats to a known truth, determined from either simulations or alternative assays such as PCR. Here, we took only male individuals and looked at the heterozygosity of the calls
only on the X chromosome. As there is only one X chromosome in males, a method that reported only homozygous calls was defined to be more accurate than those that reported heterozygous calls.

Dataset

We began with a dataset of 472 males from the Simons Simplex Collection. We had to remove 39 samples for a variety of reasons: six samples were not sequenced with a paired end approach, three samples had no coverage on the Y chromosome so were assumed to be females mislabelled as males, 28 samples produced an error in GangSTR and two samples could not be aligned to the reference genome by BWA due to a software error. The remaining 433 samples (Supplementary Table 1, see *Underlying data* (Halman, 2020a) were analysed with LobSTR (Gymrek et al., 2012), RepeatSeq (Highnam et al., 2013), HipSTR (Willems et al., 2017) and GangSTR (Mousavi et al., 2019) (see *Methods*). In addition, variant calling was performed using the GATK best practices pipeline.

In brief, the FASTQ files were mapped using BWA-MEM (Li, 2013) and the same BAM files were used as the starting point for running each STR calling method. Each method requires a set of intervals that define repeats to be genotyped. To generate this, we used Tandem Repeats Finder (Benson, 1999) to locate tandem repeats in the hg19 reference genome and detected 224774 STR loci in the X chromosome. Because we are using exome data, we only analysed calls in the 6860 capture regions on the X chromosome. In total, we found 2322 STR loci overlapping the capture regions (Figure 1A), where almost 60% of loci consist of 6 bp repeat units (Figure 1B). In our full data set, across the 433 individuals, we have over a million STR loci for analysis.

First, we looked the ability of a method to make a call at any given locus in the capture regions. By looking at the total number of calls on the X chromosome for each method, we found that LobSTR reported the highest number of loci (Figure 2A). However, the number reported for each individual was variable. Figure 2B shows the distribution of the number of reported loci per individual, with the highest median number of calls by LobSTR (2015), outperforming GangSTR (1967), RepeatSeq (1847) and HipSTR (1834). GATK-HC reported a median of 11 loci per individual but, rather than genotyping all loci, GATK only makes a report when it deems there is a difference from the reference genome. Out of the 2322 loci we investigated, there were 23 loci for which the reference STR length was longer than the read length, but in closer examination none of the tools reported alleles in these loci that were over the read length. However, when looking only at the allele lengths then GangSTR reported 22 unique loci over all samples where at least one of the alleles were longer than the read length, whereas LobSTR reported five and both HipSTR and RepeatSeq four loci.

GATK only makes calls at positions where there is evidence that the allele is different from the reference. In this dataset, GATK made calls in a total of 346 (14.9%) different loci and 21.4% of these were heterozygous, giving a minimum overall heterozygous rate of 3.1%, assuming all uncalled positions are homozygous. No call either means the allele is a homozygous reference or there is not enough data to make a call. This is one reason why specialised STR callers are better suited for genotyping STR loci.

Figure 1. STR loci and repeat unit distribution in the X chromosome. (A) Number of STR loci defined by TRF and number of regions in the capture regions of the X chromosome. Overlapping regions include all STR loci that are completely or partially overlapping the target region. Total number of STRs found in target regions is 2322. (B) Distribution of all repeat unit sizes in overlapping regions (2322). STR, short tandem repeat; TRF, Tandem Repeats Finder.
To determine the genotyping accuracy of the four specialised STR callers, we first looked at the overall percentage of heterozygous calls to estimate the error rate for each method. Overall, RepeatSeq had the lowest median error rate, with 8675 (1.09%) of its calls being heterozygous. Next was HipSTR with 19459 (2.23%), LobSTR with 27410 (2.96%) and GangSTR with 33204 (3.29%). Again, error rates were variable across individual samples, ranging between 0% and 47.3%. RepeatSeq, HipSTR and LobSTR are generally consistent, with three sample outliers with respect to error rate, while GangSTR has higher variability in error rates across samples (Supplementary Figure 2, Extended data) (Halman, 2020a). Interestingly, for these three samples, the heterozygous percentage increased for LobSTR after the strict filtering. All tools except RepeatSeq recommend filtering the outputs based on quality metrics of the calls (see Methods for details on filtering parameters that were used). Once the recommended filters are applied, we found that the performance of GangSTR improved by 2.76% to 0.53%, HipSTR by 2.14% to 0.09% and LobSTR by 1.32% to 1.64% (Figure 3). However, the median number of calls per sample dropped for LobSTR by 201, HipSTR by 1462 loci and GangSTR by 1512.

The recommended filters for each tool were different (for instance, minimum coverage of 100 for HipSTR and 50 for GangSTR) and therefore we next decided to analyse the effect of these filtering parameters separately.

Effects of repeat unit and coverage on accuracy
We investigated the number of heterozygous calls as a function of the repeat unit length, ranging from 1 to 6 bp. We found that all tools exhibit high error rates for 1 bp repeats, which is not surprising as it is difficult to genotype homopolymers due to higher rates of polymerase slippage events. More surprisingly, 2 bp repeats were poorly genotyped by HipSTR, LobSTR and GangSTR and the best results were obtained with RepeatSeq. All other repeat unit lengths produced much more accurate genotypes.

To investigate the effect of coverage and quality scores on results, we applied call-level filters to our data according to developers’ recommendations to get two different datasets: low filtering, where we included all suggested filters except coverage and quality scores, and strict filters, where we also included filters for coverage and quality scores. Then, we looked at the effects of coverage and plotted the error rate as well as percentage of the remaining number of calls as a function of the minimum number of reads supporting the call. We expected the error rate to drop as coverage increased and this was the case for 3, 4, 5 and 6 bp repeat units. However, mono- and dinucleotide repeats did not follow a consistent pattern and the pattern was different between tools. While dinucleotide repeats showed a trend towards a lower error rate with increasing coverage for RepeatSeq and LobSTR, the trend was reversed for GangSTR (Figure 4).
Two call-level filters are recommended for GangSTR: level 1 filters, which require filtering out calls that have less than 20 reads, and level 2 filters, which require at least 50 reads to support a call. Filtering out all calls with coverage of less than 20 reads brings the heterozygous error rate for the 3–6 bp repeats to between 1.6 and 3.1% at this minimum coverage. Filtering out calls with less than 50 reads improves the error rate even further to 0.83–1.97%. However, by filtering out calls with coverage of less than 20, we lose on average 39.4% of 2–6 bp repeats data, with a median of 1120 loci reported per sample. By filtering out calls with coverage less than 50, we lose on average 71.7% of 2–6 bp repeats data and have a median of 464 loci reported. Interestingly, we see an increase in error rate as a function of coverage when genotyping 2 bp STRs (Figure 4A). Unlike the other tools, where heterozygous percentage decreases when coverage increases and remains relatively steady, GangSTR is not so consistent and fluctuates around 1%.

HipSTR excludes calls that have coverage less than 100 by default unless specified otherwise. This coverage gives high accuracy but also filters out 75.9% of data. We investigated reducing the minimum coverage and found HipSTR has excellent accuracy even with minimum coverage of 25: 0.02–0.04% heterozygous rate for 3, 5 and 6 bp and 0.16% for 4 bp repeats (Figure 4B). In addition, a minimum coverage of 50 improves results even more and the maximum error rate for these repeats is 0.01% at this minimum coverage (median of 899 calls per sample). HipSTR also struggles to genotype 2 bp repeats, having a heterozygous error rate around 5.2% for coverage of both 25 and 50. Therefore, by decreasing the filtering parameters for coverage to only exclude the calls less than 25x coverage, we retain on average 76.6% of data for 2–6 bp repeat units, with a moderate call rate (median of 1369 calls per sample).

LobSTR recommends filtering out calls with coverage less than five, which gives us a heterozygous percentage for 3–6 bp repeat units at this minimum coverage of 0.44–0.90% per repeat unit length. This filters out on average 10.0% of calls for 2–6 bp repeats, giving a median of 1840 reported alleles per sample. The accuracy for these repeats increases as a function of coverage and considering the amount of calls that are filtered out, a minimum coverage of 5–10 might be the best compromise. By filtering out calls with coverage less than 10, the heterozygous error rate at this minimum coverage is 0.55% for 4 bp and 5 bp repeats, 0.48% for 3 bp repeats and 0.36% for 6 bp repeats, while still retaining 74.5% of calls on average for 2–6 bp repeats (median of 1555 calls per sample). Increasing the minimum coverage to 20 reads would improve our results by a further 0.2% but also filter out significantly more calls. For dinucleotide repeats, accuracy seems to get better with higher coverage and reaches 1% error rate when the minimum coverage is 33; however, the error rate increases again when coverage increases over 42 (Figure 4C).
Authors of RepeatSeq do not recommend any additional filtering and we found high accuracy even at low coverage. Filtering out all calls less than coverage of five will result in an error rate for 3–6 bp repeat units of 0.04–0.08% and only an average 7.1% of 2–6 bp repeat calls filtered out, leaving an average of 1728 reported calls per sample. Among all tools, RepeatSeq shows the best accuracy for dinucleotides, having an error rate no more than 1.81% (Figure 4D).

As mentioned, we saw unusually high error rates for dinucleotide repeats in nearly all tools, so we examined these repeats in more detail. Curiously, we found that for GangSTR and LobSTR, the unusually high error rate of 2 bp repeats were due to AC/TG repeats, while other repeat units do not exhibit these characteristics (Figure 5). The same pattern was observed for RepeatSeq but at lower error rates. This information is not easily available for HipSTR as it does not report the repeat unit.
Effects of repeat unit and quality scores on accuracy
Besides coverage, the second parameter which is commonly used for filtering in all tools is the call quality or quality score produced by each algorithm. We next investigated the effects of quality scores on accuracy by relaxing the coverage filtering and looking at the quality scores in different bins across the score range (Figure 6). GangSTR’s level 2 filters recommend filtering out calls that have quality scores below 0.9. We see in Figure 6A that the heterozygous error rate fluctuates at lower scores and starts to decrease from quality scores above 0.6 for all repeats except for homopolymers. We reach a 1% heterozygous error rate when excluding calls that have quality scores below 0.81 for 3 bp repeat units, 0.66 for 4 bp units, 0.77 for 5 bp units and 0.93 for 6 bp repeat units. We see the lowest heterozygous error rate at the quality score of 1.0, but we also determined a sharp drop in the number of reported genotypes after excluding calls with quality scores below 1.0, and we also lose 61.7% of 3–6 bp repeats data on average. The recommended 0.9 seems a reasonable suggestion for balancing the accuracy with how much data we will have left after the filtering. We can also see that the accuracy of 1 bp repeat calls improves with the highest quality score (1.0) and a stronger filter for this repeat unit may be appropriate.

HipSTR, similarly to GangSTR, recommends filtering out calls with a quality score less than 0.9. In Figure 6B, we can see that on average the calls with a score below 1.0 have a high heterozygous error rate, and keeping only the ones with the highest quality score will improve overall accuracy. Indeed, 98.5% of calls have a quality score of 1.0 and therefore, we only lose a fraction of data while filtering out calls with a quality score below 1.0, which may be a good trade-off.
Figure 6. Percentage of heterozygous calls in different bins of quality score separated by each repeat unit length. (A) GangSTR, (B) HipSTR, (C) LobSTR, (D) RepeatSeq. Each bin is from marked range (inclusive) to the end value (exclusive), except the last one. Dot size represents the number of calls in that range of the repeat unit length (rows).

LobSTR recommends filtering out calls with a call quality score less than 0.8. As seen in Figure 6C, the heterozygous error rate fluctuates but generally shows higher accuracy with higher quality scores for 1–3 bp repeats, while for 4–6 bp there is no clear trend below a quality score of 0.9. There is no significant improvement in overall accuracy when we remove calls with quality scores less than 0.8, or even 0.9, which might be due to the fact that, similar to HipSTR, the majority of calls (94.3%) have a quality score of 1.0. We do see improvement when only leaving calls with quality of 1.0, particularly in 1–2 bp repeat units, which shows utility in filtering out the least accurate calls and since the majority of data has a quality score of 1.0, this filtering could be a good choice, as also suggested for HipSTR (see Supplementary Figure 3, Extended data) (Halman, 2020a).
RepeatSeq does not recommend any filtering and reports quality scores on a Phred scale (Figure 6D). We determined that filtering out calls with Phred quality score of 10 or less improves the accuracy of all repeat units. Accuracy of genotyping mono- and dinucleotide repeats continues to improve as a function of Phred scores, while the best accuracy is observed at the highest quality score. On the flip side, the number of calls also decreases, and at the highest Phred scores, we are left with 31.6% of homopolymers and 87.8% of dinucleotide repeats. However, it only filters out 1.2% of 3–6 bp repeats data. Overall, filtering data based on the quality scores may be reasonable if looking at mono- or dinucleotide repeats and accuracy is an important factor.

Accuracy of GangSTR by looking at only the enclosing class of reads

LobSTR, HipSTR and RepeatSeq use types of reads where the STR region has to be completely in the read. However, GangSTR uses more classes of reads that may give rise to false positives. Therefore, to make a more direct comparison, we decided to look at GangSTR results where we filtered out all other classes of reads besides the enclosing ones, marked here as GangSTR (enc.). Compared to the previous GangSTR results, we now see lower error rates for all repeat units as well as no substantial fluctuation in higher coverage that was apparent previously in Figure 4A. At a coverage of 20, GangSTR (enc.) has a heterozygous error rate of 0.53–0.99% for 3–6 bp repeats, while 58.6% of 2–6 bp repeats data is filtered out, with a median of 699 calls per sample (Figure 7A). When we increase the minimum number of reads to 50, we can see even further improvement. This results in an error rate of 0.01–0.27% for 3–6 bp repeats; however, this also filters out 86.3% of 2–6 bp repeats data (median of 152 calls per sample).

We also looked at the dinucleotides separately (see Supplementary Figure 4, Extended data) (Halman, 2020a) and found that it is considerably lower compared to the results of GangSTR. However, we determined that AC/TG repeats still have a higher error rate compared to other repeat units (Figure 4A and Figure 7A). Results of quality scores are quite similar to GangSTR’s, where we see improvements at high quality scores (Figure 7B).

Running time of tools

Finally, we benchmarked all tools to determine their average running time. We ran each tool genome wide by using one, two, four and eight cores and determined that only RepeatSeq supports multithreading, which allows the

![Figure 7](image.png)

Figure 7. Percentage of (A) heterozygous calls per minimum number of reads and (B) in different quality score ranges for GangSTR (enc.). Solid line on (A) represents the percentage of heterozygous calls per minimum number of reads and dotted line represents the percentage of remaining calls per minimum number of reads. Dot size on (B) represents the number of calls in that range of the repeat unit length (rows) and each bin is from marked range (inclusive) to the end value (exclusive), except the last one.
to run faster when utilizing more processor cores. In particular, we saw that for samples that have coverage on target regions of around 90x, the average running time on one core for LobSTR was 9 min 31 sec, giving it a clear advantage compared with HipSTR at 1 h 22 min, RepeatSeq 2 h 58 min and GangSTR at 3 h 4 min. By utilizing more cores, LobSTR’s, GangSTR’s and HipSTR’s running time remained the same, while RepeatSeq’s time improved.

Discussion
We used a novel way of evaluating the error in short tandem repeats genotyping methods where we analysed STR calls on the X chromosome of male samples. Because this is a hemizygous chromosome, we determined a relative error rate as the rate of heterozygous genotypes. We performed this evaluation on a human exome dataset of 433 samples, resulting in the evaluation of more than a million STR loci. Exome sequencing is widely used, but the PCR step in library preparation causes a challenge for STR genotyping tools due to the interference of stutter noise. This is the first independent evaluation of these STR genotyping tools that we are aware of.

Many of the tools do not claim to be able to accurately genotype homopolymers and we found that indeed all tools had difficulty with these repeats, resulting in a high error rate. There was also no clear correlation between minimum coverage and accuracy of genotyping homopolymers, but using the highest quality scores did improve the accuracy. Interestingly, most tools produced high error rates for genotyping dinucleotides as well, which we later found to be mainly caused by AC/TG repeat units. One who analyses dinucleotide repeats with these tools should be aware of the differences in accuracy of genotyping different repeat units and carefully interpret the results of AC/TG repeat units. Repeat units with a length of 3–6 bp were all relatively accurate and similar across tools, with only minor differences. However, genotyping was slightly less accurate for 3 bp length repeats in low coverage and low quality scores, but differences were reduced with proper filtering. We found that LobSTR was able to report the highest number of genotypes at a heterozygous error rate of less than 1%.

There are certain filtering parameters suggested for each tool and we examined the effects of coverage and quality scores across all tools. However, some tools have further parameters that could be explored that were not part of our investigation. In general, we found that higher quality scores increased the accuracy of results at the cost of losing some potentially accurate calls. The relationship with coverage was more complex but some coverage filtering improved results for all tools. Which parameters to use depends on the aim of the analysis. For example, more calls may be desirable to begin a screen, or more accuracy may be desirable if selecting potential disease associated loci. When one does an exploratory analysis to find potential loci of interest that can be followed up with alternative methods, then lowering filtering parameters for coverage and quality scores for certain tools could be a good approach as it leaves us with larger portion of data. We found that even in exome data, we can use these tools to genotype tens of thousands of loci.

Unlike the other tools we used in this analysis, GangSTR utilises four different types of reads, which can help to pick up the locus other tools cannot (such as those longer than the read length). However, these can also produce genotyping errors. In our analysis, we first looked at GangSTR results that included all four classes of reads and then we excluded all calls where only spanning or bounding class reads were present, as suggested by the tool authors. This filtering increased the genotyping accuracy of the tool (we also looked at the results where we skipped this filtering parameter but this did not improve results). Still, compared to other tools, GangSTR showed a higher error rate. Finally, we decided to look only at the enclosing class of reads as the other tools do and determined an error rate around three times lower at 20x and bigger gains at higher coverage. On the other hand, that change will result in losing the ability to genotype alleles longer than the read length, which is GangSTR’s important addition. We also found that HipSTR has a very high accuracy for 3–6 bp repeats when coverage is at least 50x. Excellent accuracy was also found for RepeatSeq at very low coverage and this was the most accurate among the tools for genotyping dinucleotides. In addition, RepeatSeq is the only tool that supports multithreading and therefore can run faster by allocating more cores.

Here, we have presented one way of performing an evaluation and this approach does not look at accuracy of the estimated allele length, which is a limitation of the study. In addition, it is difficult to rule out a bias towards tools that default to genotyping an allele as a homozygous reference by the software. Our comparisons were specifically analysing an exome dataset that was PCR amplified, where a tools’ noise model may play an important role. Therefore, tools may perform differently when we analyse PCR-free WGS datasets.

In conclusion, all these tools are built to genotype STRs but have different strengths and weaknesses. Based on our analysis there is no clear overall winner. RepeatSeq and HipSTR are the best when considering
genotyping error rate even with low coverage. On the other hand, GangSTR has an advantage because it is the only tool among them that can call alleles longer than the read length but shows a higher error rate, unless looking at only the enclosed class of reads, which in turn would lose the GangSTR’s advantage of picking up long genotypes. In addition, GangSTR is the newest tool and so comes with reference files for different reference builds that are periodically updated according to the tool’s webpage. The correct choice of a tool and the subsequent filtering depends on the aim of the analysis, and might be influenced by available hardware resources and time limit for running tools.

Methods

Dataset

In order to compare all STR tools, we ran each one of them on the same dataset. We used the data from the publicly available Simons Simplex Collection (SSC) for our analysis.

In total there were 238 families where only males were selected for our analysis to avoid heterozygous sites in the X chromosome, assuming that any multiallelic STR calls should be a result of PCR and/or sequencing errors. Male samples were determined by using metadata of samples (472 samples) and quality controlled by looking at the coverage on X and Y chromosomes. Results of the analysis led to the exclusion of three samples as they had no coverage on the Y chromosome. Out of the remaining 469 samples, we excluded six single-end read sequenced files as well as 28 paired-end read sequenced samples that did not work on GangSTR, and two additional samples that had issues with mapping, which left us with 433 samples in total (Supplementary Table 1, see Underlying data) (Halman, 2020a).

Genomic DNA of the final (433) samples used in this analysis was extracted from whole blood, exomes were captured with NimbleGen EZ Exome v2.0 (Roche Nimblegen, Inc., Madison, WI) reagents and sequenced using Illumina (San Diego, CA) GAIIx (N = 271) or HiSeq 2000 (N = 162) at the Yale University School of Medicine.

All computational steps (tools and parameters used) are described in this section.

SRA to FASTQ conversion

All whole-exome sequencing files in Simons Simplex families were downloaded from NCBI Sequence Read Archive (SRA) and converted to FASTQ files by using `fastq-dump`:

```bash
fastq-dump \
--gzip \ 
--skip-technical \ 
--readids \ 
--read-filter pass \ 
--split-3 \ 
--dumpbase \ 
--clip \ 
FILE.SRA
```

Defining STR regions

The human reference sequence hg19 (February 2009 assembly) was downloaded from UCSC and the “hg19.fa” file was created by and indexed using Samtools v1.10 (Li et al., 2009):

```
cat *.fa > hg19.fa
samtools faidx hg19.fa
```

Creating FASTA sequence dictionary file for GATK analysis:

```
gatk CreateSequenceDictionary 
-R hg19.fa 
-O hg19.dict
```
Tandem Repeats Finder v4.09 (Benson, 1999) was used to find STRs (1–6 bp repeat unit length) in the hg19 reference genome using the following command and parameters:

```
./trf409.linux64 hgl9.fa 2 7 7 80 10 24 6 -h
```

A custom-made Python script named trf2bed.py (Halman, 2020b) was used to extract data from the TRF output file to generate a BED regions file for LobSTR, GangSTR, HipSTR, RepeatSeq and GATK.

```
python3 trf2bed.py 
   --dat hgl9.fa.2.7.7.80.10.24.6.dat 
   --bed hgl9.fa.2.7.7.80.10.24.6_$TOOL.bed 
   --tool $TOOL
```

FASTQ alignment and calculating BAM coverage

Reads from FASTQ files were aligned to the hg19 reference genome using BWA-MEM v0.7.17 and aligned BAM files were merged and indexed using Samtools v1.10 (Li et al., 2009).

```
bwa mem -M -t 8 -R "@RG\tID:$id\tPL:$PLATFORM\tPU:$BARCODE\tSM:$SAMPLE\tLB:$LIBRARY" hgl9.fa $INPUT_FILE1.fastq $INPUT_FILE2.fastq | samtools sort -@hg19.fa -o $OUTPUT_FILE.bam -
samtools merge $OUTPUT_FILE.merge.bam $INPUT_FILE1.bam $INPUT_FILE2.bam
samtools index $INPUT_FILE.merge.bam
```

To follow the best practices of GATK duplicate reads were removed:

```
gatk MarkDuplicatesSpark 
   INPUT=$INPUT_FILE.merge.bam 
   OUTPUT=$OUTPUT_FILE.bam 
   --remove-sequencing-duplicates 
   --create-output-bam-index
```

Coverage of BAM files on target regions was found with the MosDepth v0.2.4 tool, followed by calculating the median and average coverage:

```
mosdepth 
  -n 
  --fast-mode 
  --by $TARGET_REGIONS.bed 
  $OUTPUT_FILE.coverage 
  $INPUT_FILE.merge.bam

gunzip -c $INPUT_FILE.regions.bed.gz | sort -n -k 5 | awk '{a[NR]=
$5}END{print(NR%2==1)?a[int(NR/2)+1]:a[NR/2]+a[NR/2+1])/2} > $OUTPUT_FILE.avgcov

gunzip -c $INPUT_FILE.regions.bed.gz | sort -n -k 5 | awk '{ sum += \$5; n++ } END { if (n > 0) print sum / n; }' > $OUTPUT_FILE.medcov
```
Calling STRs and genotyping

GangSTR v2.4 (Mousavi et al., 2019) was executed with the following parameters:

```bash
GangSTR
--bam $INPUT_FILE.merge.bam
--ref hg19.fa
--regions hg19.fa.2.7.7.80.10.24.6_gangstr.bed
--out $OUTPUT.vcf
--nonuniform
--coverage X*
```

* where X = mean coverage for the particular sample that was calculated by MosDepth tool as described previously.

Strict filtering was done as recommended by the developer using dumpSTR, which is part of TRTools package:

```bash
dumpSTR
--vcf $INPUT_FILE.vcf
--out $OUTPUT_FILE
--filter-spanbound-only
--filter-badCI
--max-call-DP 1000
--min-call-DP 50
--min-call-Q 0.9
```

Since we were looking the relationship between coverage and quality scores, and genotyping accuracy separately, we did additional filtering (partial filtering), where we discarded the filtering on calls with low coverage or low-quality scores:

```bash
dumpSTR
--vcf $INPUT_FILE.vcf
--out $OUTPUT_FILE
--filter-spanbound-only
--filter-badCI
--max-call-DP 1000
```

RepeatSeq v0.8.2 (Highnam et al., 2013) was executed with the following parameters:

```bash
repeatseq
$INPUT_FILE.bam
hg19.fa
hg19.fa.2.7.7.80.10.24.6_repeatseq.bed
```

LobSTR v4.0.6 (Gymrek et al., 2012) was downloaded and a custom lobSTR reference was made using lobstr_index.py and GetSTRInfo.py scripts as follows:

```bash
python ./lobstr/scripts/lobstr_index.py
--str hg19.fa.2.7.7.80.10.24.6_lobstr.bed
--ref hg19.fa
--out ./lobstr/hg19_custom/
python ./lobstr/scripts/GetSTRInfo.py
hg19.fa.2.7.7.80.10.24.6_lobstr.bed hg19.fa > ./lobstr/hg19_custom/lobstr_hg19_custom_strinfo.tab
```
LobSTR’s allelotype was used to call STRs and it was run with default parameters, with and without the the "--no-rmdup" flag:

```bash
./lobstr/bin/allelotype \
  --command classify \
  --bam $INPUT_FILE.merge.bam \
  --index-prefix ./lobstr/hg19_custom/lobstr_hg19_custom_ref/lobSTR_ \
  --strinfo ./lobstr/hg19_custom/lobstr_hg19_custom_strinfo.tab \
  --noise_model ./lobstr/share/lobSTR/models/illumina_v3.pcrfree \
  --out $OUTPUT_FILE.vcf \
  --no-rmdup
```

Willems and colleagues explored the effects of recommended allelotype options for lobSTR (--filter-mapq0, --filter-clipped, --max-repeats-in-ends and --min-read-end-match), but found the optimal settings for lobSTR does not include these parameters and best results are obtained with default ones, which was also reported for RepeatSeq (Willems et al., 2017), and therefore we decided to run both tools with the default parameters.

We did the strict filtering with the lobSTR’s filtering tool, based on the author’s recommendations for whole genome data:

```bash
python ./lobstr/share/lobSTR/scripts/lobSTR_filter_vcf.py \
  --vcf $INPUT_FILE.vcf > $OUTPUT_FILE.vcf \
  --loc-cov 5 \n  --loc-log-score 0.8 \n  --loc-call-rate 0.8 \n  --loc-max-ref-length 80 \n  --call-cov 5 \n  --call-log-score 0.8 \n  --call-dist-end 20
```

And the partial filtering:

```bash
python ./lobstr/share/lobSTR/scripts/lobSTR_filter_vcf.py \
  --vcf $INPUT_FILE.vcf > $OUTPUT_FILE.vcf \
  --loc-call-rate 0.8 \n  --loc-max-ref-length 80 \n  --call-dist-end 20
```

HipSTR v0.6.2 (Willems et al., 2017) was executed with the following parameters:

```bash
HipSTR \
  --min-reads 2 \n  --def-stutter-model \n  --fasta hg19.fa \n  --regions hg19_2.7.7.80.10.24.6_hipstr.bed \n  --str-vcf $OUTPUT_FILE.vcf.gz \n  --bams $INPUT_FILE.merge.bam
```
Strict filtering was done according to the developer’s recommendations:

```bash
python ./HipSTR/scripts/filter_vcf.py \
    --vcf $INPUT_FILE.vcf \ 
    --min-call-qual 0.9 \ 
    --max-call-flank-indel 0.15 \ 
    --max-call-stutter 0.15 \ 
    --min-call-allele-bias -2 \ 
    --min-call-strand-bias -2 > $OUTPUT_FILE.vcf
```

Since we ran HipSTR with “--min-reads 2” parameter, we additionally filtered out all calls that had less than 100 reads, as this is the default parameter that HipSTR uses.

Partial filtering was done:

```bash
python ./HipSTR/scripts/filter_vcf.py \
    --vcf $INPUT_FILE.vcf \ 
    --max-call-flank-indel 0.15 \ 
    --max-call-stutter 0.15 \ 
    --min-call-allele-bias -2 \ 
    --min-call-strand-bias -2 > $OUTPUT_FILE.vcf
```

GATK v4.1.2 was executed with the following standard parameters:

```bash
gatk HaplotypeCaller \ 
    --reference hg19.fa \ 
    --intervals hg19_2.7.7.80.10.24.6_gatk.bed \ 
    --genotyping-mode DISCOVERY \ 
    --input $INPUT_FILE.merge.bam \ 
    --output $OUTPUT_FILE.vcf
```

Data were analysed using GATK best practice guidelines ([DePristo et al., 2011](#)) up to variant calling. Variant calling was performed with the HaplotypeCaller in GATK ([Poplin et al., 2017](#)).

Data extraction from variant calling files (VCFs) and analysis

A custom-made Python script named extract-data.py ([Halman, 2020b](#)) was created to extract data from outputted VCFs of all tools ran:

```bash
python3 extract-data.py --tool *toolname --vcf ./vcf_folder --chr chrX --out disk
```

* Where toolname was either gangstr, lobstr, hipstr, repeatseq or gatk

In particularly, only calls in the X chromosome were extracted out. In case of filtering, only calls that passed the filter were extracted out. The output file contained information about all STR loci found in the VCF file, having the following fields: sample name, locus, chromosome, start and end coordinates of the STR region, motif (repeat unit), length of motif, length of the reference, length of alleles, genotype, number of total reads, number of reads supporting the call in each class and the quality score.

The data was then analysed in R by using str-analyse.R together with str-analyse.functions.R script ([Halman, 2020b](#)). Bioconductor’s GenomicRanges package for R ([Lawrence et al., 2013](#)) was used to find and then filter out all calls that fell outside of the target regions. All STR regions that were entirely or partially inside of the target region were included in the analysis, however, all duplicate loci were removed. When calculating heterozygous percentage per minimum number of reads or quality score bins, we only included the
results when there were minimum of ten results (samples) to use and calculated the percentage again for each repeat unit length after each read or after 1/10 quality score bin.

Running time and multithreading

To see the performance of the STR specific tools we selected five WES samples that had a median coverage on target regions closest to 90x (between 88.6x and 91.6x) and calculated the time each tool ran on each sample individually by using either one, two, four or eight processor cores on the same server that has Intel(R) Xeon(R) 2.60 GHz processors and maximum of 16 GB RAM. Each test was repeated three times and the average time was calculated. Timing was performed with the UNIX time command.

An earlier version of this article can be found on bioRxiv (doi: https://doi.org/10.1101/2020.02.03.933002).

Data availability

Underlying data

The Simons Simplex Collection dataset, Accession number SRP010920: https://identifiers.org/insdc.sra:SRP010920

Harvard Dataverse: Supplementary information for the “Accuracy of short tandem repeats genotyping tools in whole exome sequencing data” article. https://doi.org/10.7910/DVN/RWTGWK (Halman, 2020a)

This project contains the following underlying data within the ‘Supplementary_information’ PDF:

- Supplementary Table 1 (list of all accession numbers used in the analysis)

Extended data

Harvard Dataverse: Supplementary information for the “Accuracy of short tandem repeats genotyping tools in whole exome sequencing data” article. https://doi.org/10.7910/DVN/RWTGWK (Halman, 2020a)

This project contains the following extended data within the ‘Supplementary_information’ PDF:

- Supplementary Figure 1 (Coverage of X and Y chromosome of samples marked as male in the metadata)
- Supplementary Figure 2 (Percentage of heterozygous calls over all samples with and without filters applied)
- Supplementary Figure 3 (Percentage of heterozygous calls as a function of minimum quality score)
- Supplementary Figure 4 (Percentage of heterozygous calls per minimum number of reads for dinucleotides)

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Software availability

Source code available from: https://gitlab.com/andreassh/research-str-wes

Archived source code at time of publication: https://doi.org/10.5281/zenodo.3695971 (Halman, 2020b)

License: MIT

Acknowledgments

The authors are thankful to Katrina Bell for their comments and suggestions for the article.

References

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com