SOFTWARE TOOL ARTICLE

iMutSig: a web application to identify the most similar mutational signature using shiny [version 1; peer review: 2 approved with reservations]

Zhi Yang, Priyatama Pandey, Paul Marjoram, Kimberly D. Siegmund

Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 N.Soto Street, Los Angeles, CA, 91003, USA

Abstract

There are two frameworks for characterizing mutational signatures which are commonly used to describe the nucleotide patterns that arise from mutational processes. Estimated mutational signatures from fitting these two methods in human cancer can be found online, in the Catalogue Of Somatic Mutations In Cancer (COSMIC) website or a GitHub repository. The two frameworks make differing assumptions regarding independence of base pairs and for that reason may produce different results. Consequently, there is a need to compare and contrast the results of the two methods, but no such tool currently exists. In this paper, we provide a simple and intuitive interface that allows such comparisons to be easily performed. When using our software, the user may download published mutational signatures of either type. Mutational signatures from the *pmsignature* data source are expanded to probabilistic vectors of 96-possible mutation types, the same model specification used by COSMIC, and then compared to COSMIC signatures. Cosine similarity measures the extent of signature similarity. *iMutSig* provides a simple and user-friendly web application allowing researchers to compare signatures from COSMIC to those from *pmsignature*, and vice versa. Furthermore, *iMutSig* allows users to input a self-defined mutational signature and examine its similarity to published signatures from both data sources. *iMutSig* is accessible online and source code is available for download on GitHub.

Keywords

Mutational Signatures, *pmsignature*, COSMIC, Web interface, Shiny, R

This article is included in the RPackage gateway.
Corresponding author: Zhi Yang (zhiyang@usc.edu)

Author roles: Yang Z: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Software, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Pandey P: Validation, Writing – Review & Editing; Marjoram P: Funding Acquisition, Methodology, Project Administration, Resources, Supervision, Validation, Writing – Review & Editing; Siegmund KD: Funding Acquisition, Project Administration, Resources, Supervision, Validation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the National Cancer Institute [P01CA196569, P30CA014089 and R21 CA226106], and the National Institute of Environmental Health Sciences [P30ES07048]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health (NIH).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Yang Z et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Yang Z, Pandey P, Marjoram P and Siegmund KD. iMutSig: a web application to identify the most similar mutational signature using shiny [version 1; peer review: 2 approved with reservations] F1000Research 2020, 9:586

Introduction

Each human is subject to a variety of mutational processes throughout their lifetime, which result in the formation of a catalog of somatic mutations as his/her unique mutational profile. A mutational signature captures the pattern of the mutations and contexts in which those mutations occur (i.e., the neighboring bases). Examples of important mutational processes with distinct mutational signatures include aging and ultraviolet (UV) radiation. Additionally, many research groups are performing analysis to discover de novo mutational signatures in cancer.

Currently, there are two frameworks used to characterize and visualize mutational signatures. The first, proposed by Alexandrov et al., used a vector of 96 probabilities to capture the possible composition of the six nucleotide substitutions (C>A, C>T, C>G, T>A, T>C, T>G) and the neighboring base immediately on each of the 5’ and 3’ side of the mutated base. A list of published mutational signatures can be downloaded from the Catalogue Of Somatic Mutations In Cancer (COSMIC) website (version 2, v2). Later, Alexandrov et al. published an expanded set of mutational signatures, which was referred to as version 3 (v3). The 67 COSMIC v3 Single Base Substitution (SBS) signatures include 30 v2 signatures. Based on the signature concept, but using different model assumptions, Shiraishi et al. proposed a mixed-membership model, pmsignature, which substantially reduced the number of parameters needed to characterize a signature. They achieved this by assuming independence across bases, thereby reducing the number of parameters from $6^34^3=108$ to (6-1)+(4-1)+(4-1) = 11. The reduction in the number of parameters is greater if more flanking bases are included. All Shiraishi’s signatures can be downloaded from their GitHub repository. In this paper, we will refer to signatures resulting from these two methods as “COSMIC signatures” with version numbers (for those resulting from Alexandrov et al.’s method) and “PM signatures” (for those resulting from Shiraishi et al.’s method).

A large number of researchers have published scientific findings resulting from the COSMIC signature-based method, particularly for samples with lower numbers of somatic variants due to it requiring fewer parameters. Meanwhile, an increasing number of researchers are using the pmsignature-based method for samples with higher numbers of somatic variants. Given that both methods are widely used, investigators need the ability to compare results from their analysis with those reported in earlier databases, which may have been produced using the alternate method. For example, researchers have adopted both tools for gastric cancer and tried to compare and integrate the information from two data sources in a somewhat ad hoc manner. No rigorous tool exists for this task. In this paper, we present iMutSig, an easy-to-use tool that allows users to identify the most similar mutational signatures across methods and to compare the information characterizing those signatures using simple point-and-click navigation.

Methods

Implementation

In order to measure the similarity between mutational signatures across two databases, we need to represent PM signatures in a way that is comparable with those from COSMIC. To do this, we convert the PM signature into a probabilistic vector with the same length as the COSMIC signature, i.e., 96. To calculate each of 96 resulting probabilities in the vector, we take the constituent components that make up the COSMIC signature – which refer to the nucleotide substitution and two flanking bases at the -1 and +1 position - calculate the probability of each component for the given PM signature, and then multiply those probabilities using pm-signature’s assumption of independence. For example, to calculate the probability of the COSMIC signature C[C >A]T we multiply three PM signature’s probabilities: P(C at pos -1), P(C >A), and P(T at pos +1). This example is shown in Table 1 and Equation 1.

$$P(C[C >A]T) = P(C at pos-1)P([C >A])P(T at pos+1)$$

$$= 0.052 \times 0.012 \times 0.116$$

$$= 7.24 \times 10^{-5}$$

Now that we have represented both forms of signature using probabilistic vectors of length $n = 96$, P and C say, we can directly compare the two signature types. In order to measure the similarity between them we use cosine similarity, CS, defined as shown in Equation 2:

$$CS(P, C) = \frac{P \cdot C}{\|P\| \|C\|} = \frac{\sum_{i=1}^{n} P_i C_i}{\sum_{i=1}^{n} P_i \sum_{i=1}^{n} C_i}$$

Intuitively speaking, cosine similarity is the cosine of the angle between the two vectors. As such, cosine similarity

<table>
<thead>
<tr>
<th>Table 1. An example of PM signatures.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleotide substitution</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>0.012</td>
</tr>
<tr>
<td>Flanking bases</td>
</tr>
<tr>
<td>Position</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Transcription strand</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>0.511</td>
</tr>
</tbody>
</table>
ranges from 0 to 1 (inclusive). In our context, if two mutational signatures have a cosine similarity of 1, they must be identical, i.e., the angle between them is 0°; in contrast, if two mutational signatures have a cosine similarity of 0, they are maximally dissimilar (i.e., orthogonal). Computing the cosine similarity between the input signature and each of the candidate signatures, and then sorting the similarities from highest to lowest value, we identify the candidate signature with the highest cosine similarity as the most similar mutational signature.

Operation

iMutSig is built in R with its key features depending on the R package, pmsignature. As shown in Figure 1, the Shiny app currently supports three possible workflows for users to choose from, depending on the type of signatures they have already obtained: 1) starting with a COSMIC signature; 2) starting with a PM signature; 3) starting with a self-defined signature that could follow either the COSMIC or PM format.

The first tab in the Shiny app window, “COSMIC to pmsignature”, allows users to select an input COSMIC signature via a drop-down list and returns the best-matched PM signature. The returned results are divided and organized separately in the top and the bottom portion of the page. The top half tab summarizes background information regarding the input signature by presenting: 1) visualized plots of the input signature and its membership among all cancer types, i.e., in which kind of cancers the mutational signatures has been found; 2) a table showing the cosine similarity between this signature and all PM signatures, sorted in decreasing order, along with a visualization of a similarity heatmap with color and intensity proportional to assessed similarity. The bottom half tab presents plots and descriptions of the input COSMIC signature, the most similar PM signature, and a second PM signature that the user can select. Thus, users can easily access all the vital information and results regarding these signatures rather than having to manually gather and organize information from publications. The top half of the tab will be automatically updated via a control panel in the middle section of the tab, which enables users to select a signature to start with and also highlights information about the currently selected signature, the most-similar signature from the alternate model framework, and the cosine similarity.

The second tab was designed in a similar manner to the first tab, but for the case in which we are starting with a PM signature and looking for the most similar COSMIC signature. For the first two tabs, users can choose which version of COSMIC signatures to input from the sub-menus, i.e., v2 or v3.

Unlike the first two tabs, the third tab enables users to enter a user-supplied signature, which can be in either PM or COSMIC format, and then identify the most similar signature from each online database. The user will be requested to enter a sub-menu based on the type of the input signature and to upload a comma-separated values (CSV) file containing a single signature. A sample CSV file is provided for download to give the user a better sense of the format of the input file. Then, the tab will be updated to display three tables, one from each data source (COSMIC v2, v3 and PM), listing the signatures from that data source and the cosine similarity of each signature with the user-uploaded signature. The tables are ordered from most similar to least similar signature. In addition, the user is able to view figures of the best-matched signatures (i.e., those with highest cosine similarity) from each data source, allowing users to observe any similarities and dissimilarities. Below, users will see a list of cancer types that contain the best-matched signature.

Use cases

We use iMutSig to identify the most similar signature for a given PM/COSMIC signature or a user-supplied signature. Figure 2 shows the input panel after inputting COSMIC v3 signature SBS1 and Figure 3 shows the input panel after inputting PM signature P1. If users provide a user-supplied signature of either COSMIC-kind or PM-kind, the results can be seen in Figure 4 and Figure 5. Consider the example shown in Figure 4,
Figure 2. Input a COSMIC v3 signature, SBS1.
Figure 3. Input a PM signature, P1.
Figure 4. Input a user-supplied COSMIC signature.
Conclusions

iMutSig is a user-friendly interactive browser-based application that allows users who have a signature that they have discovered in an analysis of their own data to identify the best-matched existing mutational signature from the COSMIC and PM databases. It also allows users to directly compare signatures in an interactive way, and also allows straightforward visualization of results. iMutSig enables researchers to easily identify the most similar mutational signature and to easily access characteristic information from both data sources without additional software installation and programming of their own.

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

Software availability

Software available from: https://zhiyang.shinyapps.io/iMutSig/

Source code available from: http://www.github.com/USCbostats/iMutSig

Archived source code at time of publication: https://doi.org/10.5281/zenodo.3873888

License: MIT

References

Page 9 of 15
Open Peer Review

Current Peer Review Status: ??

Version 1

Reviewer Report 15 July 2020

https://doi.org/10.5256/f1000research.26954.r64570

© 2020 Perduca V. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vittorio Perduca
Université de Paris, CNRS, MAP5 UMR 8145, F-75006, Paris, France

This paper presents an original online tool for comparing mutational signatures represented according to two alternative formats, namely COSMIC vectors with the relative frequencies of the 96 types of substitutions on one side, and lower dimensional "pmsignature" vectors on the other side. The article is well written and the method behind the tool is clearly explained. The interactive tool runs smoothly and has the potential to provide useful support to researchers running mutational signature analyses using alternative frameworks.

My comments:

- One important point worth stressing is that the proposed solution for comparing "PM signatures" and "COSMIC signatures" is to represent the former lower dimensional probabilistic vectors in the larger space of the latter vectors. This is clearly explained in the methods, but I believe it is worth mentioning explicitly that this happens even when the input is of the COSMIC type.

- My major concern is that the described method relies on the pmsignature assumption of independence between the mutation features. Could the authors comment about the possible limitations entailed by this assumption?

- In my understanding, another possibility would have been to represent "COSMIC signatures" as 11-dimensional "PM signatures" by eliminating through summation two features out of three. For instance, one could compute the "PM signature" component representing the probability of the substitution \(S = [C>A] \) as

\[
P(S = [C>A]) = \sum_{l, r} P(L=l, S=[C>A], R=r),
\]

where \(L \) and \(R \) denote the -1 and +1 flanking bases, and \(P(L=l, S=[C>A], R=r) \) is one of the 96 probabilities in the input "COSMIC signature". This approach does not rely on the pmsignature assumption of independence. (This solution does not make it possible to consider "PM signatures" with more than two flanking bases, but in any case the information about such extra bases is lost when converting "PM signatures" to "COSMIC signatures" using the method described in the paper). Have the authors explored this other
method? A comment on this point could possibly help clarifying the reason why the authors have
decided to rely on the independence assumption.

- I suggest to add a figure with the heatmap showing the cosine similarity between the original 27
“PM signatures” and the 30 v2 “COSMIC signatures”. This would help understanding the type of
correspondence between the two databases.

Minor point:
- “Implementation” paragraph, line 6: pm-signature -> pmsignature.

References
2. Shiraishi Y, Tremmel G, Miyano S, Stephens M: A Simple Model-Based Approach to Inferring and

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Applied statistics, biostatistics.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have significant
reservations, as outlined above.

Reviewer Report 22 June 2020

https://doi.org/10.5256/f1000research.26954.r64568
Yang et al. present an interactive software tool, iMutSig, which allows comparison between two alternative mathematical representations of mutational signatures. Both of these representations are widely used, but are remarkably different in their visual aspect, making intuitive comparisons difficult. To my knowledge, this is the first openly available method for comparison between signatures expressed in these two alternative representations.

The methods implemented for conversion between signature representations and for comparison between signatures are straightforward and based on a widely used similarity measure; although the main formula in the paper is incorrect, this mistake does not appear to extend to the implementation. Instead of simply reporting the most similar signature to the chosen signature, the tool provides information about the similarity of the chosen signature to all the signatures available in the alternative representation, allowing better assessment of the results. The user interface is thoughtfully and tastefully designed, making the tool both easy and pleasant to use. All the offered functionalities appear to work correctly and the platform runs smoothly. The authors provide their tool as an interactive website, as well as current and archived versions of the source code. However, there is a lack of information about how to install and run the software locally as an R package, which would increase the long-term usability of the tool.

Below I provide comments regarding major and minor issues in the article and online tool. I also provide a few optional suggestions that may be safely ignored, but which I think would enhance the functionality of the tool.

MAJOR COMMENTS

1. Implementation, paragraph 2: The formula for the cosine similarity defined in Equation 2 is not correct. While it is true that
 \[\text{CS}(P,C) = \frac{(P \cdot C)}{||P|| \cdot ||C||}, \]
 it is not true that
 \[\text{CS}(P,C) = \frac{\sum (P_i \cdot C_i)}{\sum (P_i) \cdot \sum (C_i)}. \]

 The correct formula for the third part of Equation 2 would be:
 \[\text{CS}(P,C) = \frac{\sum (P_i \cdot C_i)}{\sqrt{\sum (P_i^2)} \cdot \sqrt{\sum (C_i^2)}} \]
 (see here).

 Please amend this formula, and make sure that it gives the same values as the formula you have defined in your code (function getCosDistance).

MINOR COMMENTS

2. Introduction, paragraph 1: This is somewhat inaccurate, in the sense that it is the cells in an organism's
tissues that are exposed to mutational processes throughout the organism’s life, and each cell or tissue develops its own mutational profile. The existence of a "unique mutational profile" thus may be better described as a property of a tissue, organ or tumour: it is not really accurate to say that each human has "his/her unique mutational profile", as this varies widely across tissues (e.g. cells in the blood, skin, liver, and colon have very different mutational spectra), and the differences among individuals also tend to be tissue-specific.

3. Introduction, paragraph 3: in the sentence where the motivation for PM signatures is mentioned ("due to it requiring fewer parameters"), it might be appropriate to add a brief note that the assumption of independence between substitution type and flanking bases also limits the representation of patterns where these features are dependent, although this is seen in relatively few COSMIC signatures (e.g. SBS8, SBS25, SBS35).

4. Implementation, paragraph 1: it would be useful to complement the example in Table 1 and Equation 1 with a figure that shows the original PM signature in Table 1, and the equivalent COSMIC signature that results from applying Equation 1 to each of the 96 substitution types. This would help the reader to understand the conversion between both graphical representations, which is shown in later figures.

6. Note that reference 6 is missing a colon between the author list and title.

7. The "About iMutSig" web page states that "On the Github page, you can: - install the iMutSig R package and run it locally." However, on the GitHub page I found no instructions on how the package can be installed and run locally using R and Shiny. While I understand that the main purpose of the platform is to be an online tool, some users may be interested in having a local copy. For example, the availability of the tool seemed somewhat variable: I was able to access the website (https://zhiyang.shinyapps.io/imutsig/) on 17 June, but not on 18 June. Although this might be a rare issue, it highlights the advantage of providing users with an alternative way of accessing the tool in the long term. For example, some simple steps for installation and running could be added as a README.md file on the GitHub repository.

8. Note that, in the platform interface, some of the signature names read "COSIMIC" instead of "COSMIC".

OPTIONAL SUGGESTIONS

9. I found it strange that in the tabs "COSMIC to pmsignature" and "pmsignature to COSMIC", the drop-down menus for choosing the COSMIC and PM signatures to compare are located in the middle of the interface, below the top panels that show the chosen signature. It seems to me that it would be more intuitive to place the selection menus at the top of the page, although I might be wrong.

10. The authors might consider extending the user-supplied signature mode to allow the user to input a set of signatures, and then select the signature to compare using a drop-down menu (as in the other comparison modes), as it is likely that users will be interested in analysing sets of signatures, rather than single signatures. However, I understand this might not be straightforward to implement.

11. Another potential extension could be an additional mode in which comparison could be performed between two sets of user-supplied signatures (each of which could be in COSMIC or PM format), in order
to find the best one-to-one match between the signatures.

References

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational biology, Bioinformatics.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com