Evaluation of antioxidant and anti-collagenase activity of *Rosa damascena* L. flower petal and receptacle extract [version 1; peer review: awaiting peer review]

Elfitriani Elfitriani1, Ahmad Raif1,2, Chrismis Novalinda Ginting1, Refi Ikhtiari1

1Department of Biomedical Sciences, Faculty of Medicine, Universitas Prima Indonesia, Medan, 20118, Indonesia
2Department of Pathology, Faculty of Health Sciences, Universitas Imelda Medan, Medan, 20239, Indonesia

Abstract

Background: *Rosa damascena* L. is the most notable species of the Rosaceae family in the world, and has been used in food, cosmetics, and the pharmaceutical industry. Bioactive compounds in this flower are known to have several activities, such as antioxidant, antimicrobial, and anti-inflammatory. In this study, the antioxidant and collagenase inhibitory activities of *R. damascena* L. petal and receptacle extracts were evaluated.

Methods: Ethanolic extraction of *R. damascena* L. petals (EERP) and *R. damascena* L. receptacles (EERR) were obtained, and bioactive compounds (flavonoids, phenolics, alkaloids, steroids, tannins, terpenoids, and triterpenoids) were classified by phytochemical screening. Antioxidant activities were analyzed by Ferric Reducing Antioxidant Power (FRAP) assay, while anti-collagenase analysis was examined through the inhibition of collagenase.

Results: Phytochemical test revealed the presence of flavonoids, phenolics, alkaloids, steroids, triterpenoids, triterpenes, and tannin. EERP showed higher FRAP activity (164.23 ± 1.34 μM Fe(II)) than EERR (12.85 ± 6.19 μM Fe(II)). EERP also had higher inhibitory activity of collagenase (IC50 = 115.48±1.78 μM/mL) compared to EERR (IC50 = 141.96±6.13 μM/mL).

Conclusions: *R. damascena* L. petal and receptacle ethanol extracts contain several components, such as phenolics, flavonoids, alkaloids, tannins, terpenes, triterpenoids, and steroids. These extracts exhibit antioxidant activity and collagenase inhibition. *R. damascena* L. petal extract showed higher antioxidant activity through FRAP assay and inhibitory activity of collagenase than *R. damascena* L. receptacle extract.

Keywords

Rosa damascena L., Ferric Reducing Antioxidant Power, antioxidant, anti-collagenase
Corresponding author: Refi Ikhtiari (refliikhtiari@unprimdn.ac.id)

Author roles: Elfitriani E: Conceptualization, Investigation, Methodology, Writing – Original Draft Preparation; Raif A: Conceptualization, Investigation, Methodology, Resources, Writing – Original Draft Preparation; Ginting CN: Formal Analysis, Supervision, Visualization, Writing – Review & Editing; Ikhtiari R: Investigation, Methodology, Project Administration, Supervision, Validation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2020 Elfitriani E et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Elfitriani E, Raif A, Ginting CN and Ikhtiari R. Evaluation of antioxidant and anti-collagenase activity of Rosa damascena L. flower petal and receptacle extract [version 1; peer review: awaiting peer review] F1000Research 2020, 9:716 https://doi.org/10.12688/f1000research.24772.1

Introduction
Antioxidants are compounds that can react with Reactive Oxygen Species (ROS) to prevent the oxidation of lipids, DNA, and proteins. Several studies report that ROS correlates with several human diseases, such as cancer, inflammation, and the aging process. In the aging process, ROS play a role in protein unfolding, lipid breakdown, DNA damage, fragmentation, and collagen disintegration. In the body, ROS promote the activation of collagenase and block collagen synthesis, leading to a decrease in skin elasticity and acceleration of skin wrinkles. This mechanism by ROS is the major factor of degeneration collagen fiber.

Rosa damascena L. is the most important species among the Rosaceae family of flowers. This species has many pharmacological properties and has been used in food, herbal medicine, and cosmetics since ancient times. Previous research showed that R. damascena L. has anti-viral, anti-microbial, anti-cancer, anti-depressant, anti-inflammatory, anti-convulsant, and anti-oxidant activities. Several studies report that phenolic compounds and flavonoids contributed to an increase in antioxidant activity. In this study, we evaluate the antioxidant and anti-collagenase activity from ethanol extract of R. damascena L. petals and receptacles.

Methods
Sample extraction
R. damascena L. flowers were obtained from Bandung, Indonesia (-6.803662, 107.586633). In total, 1400 g and 700 g of petals and receptacles of R. damascena L. were dried and mashed, respectively. The dried samples (250 g petals and 90 g receptacles) were soaked with 8000 mL and 3000 mL of 70% ethanol, respectively, and macerated. This solvent was replaced every day for 3 days and the extracted solution from the first to the last (15th day) was mixed and concentrated using a rotary evaporator at 50°C for 4 h. The extracts were labeled as ethanol extract of rose petals (EERP) and ethanol extract of rose receptacles (EERR).

Phytochemical analysis
Phytochemical analysis was done to detect the presence of flavonoids, phenolics, tannins, steroids/terpenoids, terpenoids and alkaloids. 10 mg of extracts were used for each analysis following the procedures of Widowati et al. without modification.

Ferric ion reducing antioxidant power (FRAP) activity
The antioxidant activity of EERP and EERR was investigated using FRAP assay following Sricharoen et al. with slight modifications. Briefly, ferric chloride hexahydrate (Merck) and 2,4,6-tripyridyl-s-triazine (TPTZ) (Sigma) were mixed to form the FRAP reagent. 142.5 μL FRAP solution was added into 7.5 μL of sample extract and the mixtures were incubated at 37°C for 5 min. The absorbance of the reaction mixture was read at 539 nm. A set of concentrations 0–200 μg/mL of FeSO4.7H2O (Sigma) was used for calibration of the standard curve. The results were expressed as μM Fe(II)/μg extract.

Anti-collagenase assay
Anti-collagenase activity of EERR and EERR was assessed by evaluating the inhibition of collagenase, following the procedure of Wittenuer et al. 10 μL collagenase from Clostridium histolyticum (0.01 U/mL, Sigma), 60 μL of 50 mM Tricine buffer pH 7.5 (containing 10 mM CaCl₂ (Merck) and 400 mM NaCl (TCL Co., Ltd)), and 30 μL of extract (7.81 – 250 μg/mL) were mixed and incubated at 37°C for 20 min. After incubation, 20 μL of 1 mM N-[3-(2- Furyl)acryloyl]-leu-gly-Pro-Ala (FALGPA, Sigma) in Tricine buffer (Sigma) was added to the mixture. The collagenase inhibitory activities were measured at 335 nm by monitoring for 20 min after starting the reaction. The inhibition value was calculated according to Eq. (1). IC₅₀ values were determined from dose-effect curves.

Data analysis
Statistical analysis using SPSS version 23 was carried out by normality test using numeric variable with Levene test and ANOVA and continued with post-hoc honestly significant difference, and Tukey test to the confidence level of 95% (α = 0.05). All data are expressed as mean ± SEM.

Results and Discussion
Phytochemical analysis
Phytochemical investigations of R. damascena L. petal and receptacle extracts in ethanol expressed positive results of flavonoids, phenolic compounds, tannins, steroids, terpenoids, and alkaloids. The details are presented in Table 1.

Table 1. Phytochemical test results for ethanol extracts of Rosa damascena L. petals and receptacles. EERP, ethanolic extraction of R. damascena L. petals; EERR, ethanolic extraction of R. damascena L. receptacles.

<table>
<thead>
<tr>
<th>Test</th>
<th>Observation</th>
<th>EERP</th>
<th>Observation</th>
<th>EERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoids</td>
<td>Yellow/ Orange</td>
<td>(+)</td>
<td>Yellow/ Orange</td>
<td>(+)</td>
</tr>
<tr>
<td>Phenolics</td>
<td>Green/Blue/Black</td>
<td>(+)</td>
<td>Green/Blue/Black</td>
<td>(+)</td>
</tr>
<tr>
<td>Tannins</td>
<td>Red/ Orange Layer</td>
<td>(+)</td>
<td>Yellow gold Layer</td>
<td>(+)</td>
</tr>
<tr>
<td>Steroids/Triterpenoids</td>
<td>Orange</td>
<td>(+)</td>
<td>Triterpenoids</td>
<td>Green</td>
</tr>
<tr>
<td>Steroids/Triterpenoids</td>
<td>Orange</td>
<td>(+)</td>
<td>Triterpenoids</td>
<td>Green</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>Orange</td>
<td>(+)</td>
<td>Orange</td>
<td>(+)</td>
</tr>
</tbody>
</table>
The results of phytochemical screening showed steroids are detected in EERP by the bluish-green color, while in the same test, EERR gave a red color indicated it contained triterpenes. Although there was a difference between chemical compounds, both samples contained phenol and flavonoids that act as antioxidants and anti-collagenases. In previous research, Patil et al. found that the ethanol extract of *R. damascene* Mill L. contains total phenolic and flavonoid compounds at a higher level than acetone, aqueous, and chloroform extracts. The antioxidant and anti-collagen activity of flowers depends on the compounds it contains and the solvent used. Phenolics are well known to have antioxidant capability, as does flavonoids and alkaloids. Steroids, terpenoids, and triterpenoids also have been reported to have antioxidant activity. Muccilli et al. reported that tannins also play a role in blocking oxidative chain reactions. The solvent extract also has a contribution to increasing antioxidant and anti-collagenase activity. Ethanol extract of *R. damascena* L. petals has been shown to have a lower IC$_{50}$ value than acetone when evaluated by DPPH. Ethanol extracts also show the highest phenolic content and antioxidant activity than water extracts of *R. spinosissima*.

Antioxidant activity

Total antioxidant activity of EERP and EERR were further evaluated by FRAP assay. The FRAP value was obtained by plotting the standard curve of FeSO$_4$ at a concentration between 0.78 and 50 μg/mL (Figure 1).

The antioxidant activity of both extracts is presented in Figure 2. In this test, the antioxidant activities were obtained based on the capacity to reduce ferric (III) to ferrous (II). The result demonstrates that EERP has higher antioxidant capacity compared to EERR.

Table 2 showed FRAP values for different concentrations of EERP and EERR. The data showed normal distribution and was significantly different (p > 0.005). Both extracts showed higher antioxidant activity with higher concentrations (Figure 2). The highest antioxidant activities were observed at 50 at μg/mL (EERP: 164.23 ± 1.34 μM/mL; EERR: 12.85 ± 6.19 μM/mL).

Anti-collagenase activity

Collagen is the most abundant protein responsible for conferring skin thickness, strength, and elasticity. This metalloproteinase enzyme has a vital role in collagen degradation, which increases aging signs. The percentage of collagenase inhibition of EERP and EERR found in the present study is presented in Table 3. Anti-collagenase activity showed a concentration-dependent manner, where higher concentrations of the extracts increased the anti-collagenase (and thus antiaging) activity of extracts. At the highest concentration (250 μM/mL) EERP showed the highest inhibition activity compared to EERR (91.52 ± 3.44 μg/mL and 77 ± 2.03 μg/mL, respectively). The IC$_{50}$ percentage can be seen in Table 4. The IC$_{50}$ value of EERR is higher than EERP (141.96 ± 6.13 μM/mL and 115.48 ± 1.78 μM/mL, respectively). This indicates that EERR has less activity to impede collagenase activity than EERP; however, these results show that there is potential for EERR to inhibit collagenase. Park et al. found that *R. damascena* extract impacted...
Figure 2. Effect of various concentrations of EERP and EERR in FRAP activity. EERP, ethanolic extraction of *Rosa damascena* L. petals; EERR, ethanolic extraction of *R. damascena* L. receptacles.

Table 2. FRAP activities of EERP and EERR. EERP, ethanolic extraction of *Rosa damascena* L. petals; EERR, ethanolic extraction of *R. damascena* L. receptacles.

<table>
<thead>
<tr>
<th>Concentration (µg/mL)</th>
<th>FRAP activity (µM Fe(II))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EERP</td>
</tr>
<tr>
<td>0.78</td>
<td>23.70±3.88a</td>
</tr>
<tr>
<td>1.56</td>
<td>37.83±5.53ab</td>
</tr>
<tr>
<td>3.13</td>
<td>50.43±6.32ac</td>
</tr>
<tr>
<td>6.25</td>
<td>56.63±5.66bd</td>
</tr>
<tr>
<td>12.50</td>
<td>88.50±7.75c</td>
</tr>
<tr>
<td>25.00</td>
<td>115.20±8.24c</td>
</tr>
<tr>
<td>50.00</td>
<td>164.23±1.34c</td>
</tr>
</tbody>
</table>

Data presented in the form of mean ± SEM. Different lowercase letters indicate a significant difference in p < 0.05 (Post Hoc Tukey HSD Test).

Table 3. Anti-collagenase activity of EERP and EERR. EERP and EERR were diluted in tricine buffer to reach the final concentration of 7.81; 15.63; 31.25; 62.50; 125.00; 250.00 (µg/mL). EERP, ethanolic extraction of *Rosa damascena* L. petals; EERR, ethanolic extraction of *R. damascena* L. receptacles.

<table>
<thead>
<tr>
<th>Concentration (µg/mL)</th>
<th>Inhibition activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EERP</td>
</tr>
<tr>
<td>7.81</td>
<td>11.81±1.76a</td>
</tr>
<tr>
<td>15.63</td>
<td>21.09±1.49a</td>
</tr>
<tr>
<td>31.25</td>
<td>21.68±2.50ab</td>
</tr>
<tr>
<td>62.50</td>
<td>33.01±2.42bc</td>
</tr>
<tr>
<td>125.00</td>
<td>56.46±7.67cd</td>
</tr>
<tr>
<td>250.00</td>
<td>91.52±3.44de</td>
</tr>
</tbody>
</table>

Data presented in the form of mean ± SEM. Different lowercase letters indicate a significant difference in p < 0.05 (Post Hoc Tukey HSD Test).

Table 4. IC50 value of the anti-collagenase activity of EERP and EERR. EERP, ethanolic extraction of *Rosa damascena* L. petals; EERR, ethanolic extraction of *R. damascena* L. receptacles.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Equation</th>
<th>R²</th>
<th>IC50 (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EERP</td>
<td>y = 0.3208x + 12.944</td>
<td>0.999</td>
<td>115.48±1.78</td>
</tr>
<tr>
<td>EERR</td>
<td>y = 0.2598x + 13.146</td>
<td>0.990</td>
<td>141.96±6.13</td>
</tr>
</tbody>
</table>
metalloproteinase transcription by suppressing AP-1 activation. AP-1 is a protein activated by UVB penetration to the skin, and initiates changes of the extracellular matrix, including collagen, elastin, and proteoglycans degradation. Our results show that ethanol extracts of petals and receptacles of *R. damascene* L. possess anti-collagenase activity.

Conclusion

R. damascene L. petal and receptacle ethanol extracts contain several components, such as phenolics, flavonoids, alkaloids, tannins, terpenes, triterpenoids, and steroids. The pharmacological effects of these extracts exhibit antioxidant activity and collagenase inhibition. *R. damascena* L. petal extract showed higher antioxidant activity through FRAP assay and inhibitory activity of collagenase than *R. damascena* L. receptacle extract.

Data availability

Underlying data

Figshare: Raw data Analysis of anticollagenase an IC50 value.xlsx, https://doi.org/10.6084/m9.figshare.12585626.v1

Figshare: Raw data FRAP Activity of Extracts of Rosa Damascena Petals and Receptacles, https://doi.org/10.6084/m9.figshare.12585671.v1

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

References

The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com