COVID-19 and blood groups – there is an elephant in the room, but who cares? Do we need additional rules for preprints? [version 1; peer review: 1 approved]

Joern Bullerdiek¹,²

¹Institute for Medical Genetics, Medical Center, University of Rostock, Rostock, Mecklenburg-Vorpommern, D-18057, Germany
²Human Genetics, University of Bremen, Bremen, Bremen, D-28359 Bremen, Germany

Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) not only can cause very severe disease but, less obviously, the virus can also infect science in unpredicted ways. It seems that during these times some basic rules of science will lose validity and we do not know if they will come back. Though not necessarily always being the case, problems can arise from messages that make their way to public media straight from preprints. An impressive example is a recent study on an association between ABO blood groups and the severity of COVID-19. The study was first published as a preprint which almost immediately gathered an enormous amount of public interest though major drawbacks of the study had been identified by members of the scientific community. One of the major advantages of preprints is to present data, even if still incomplete, to the scientific community for an early discussion. It does not serve the quality of science if possible critical considerations are not addressed adequately until these preliminary studies go public and are submitted for publication in classical journals. Accordingly, clear additional rules for handling data derived from preprints are advocated herein. Speed does not have an advantage on its own.

Keywords
COVID-19, disease severity, blood group, preprints

This article is included in the Disease Outbreaks gateway.
This article is included in the Science Policy Research gateway.

This article is included in the Coronavirus collection.

Corresponding author: Joern Bullerdiek (joern.bullerdiek@med.uni-rostock.de)
Author roles: Bullerdiek J: Conceptualization, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: The author(s) declared that no grants were involved in supporting this work.
Copyright: © 2020 Bullerdiek J. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Bullerdiek J. COVID-19 and blood groups – there is an elephant in the room, but who cares? Do we need additional rules for preprints? [version 1; peer review: 1 approved] F1000Research 2020, 9:1139
First published: 16 Sep 2020, 9:1139 https://doi.org/10.12688/f1000research.26333.1
In general, associations between blood groups and infectious diseases are well known. They may be either related to the probability of becoming infected or to a more or less severe course of the disease. Recently, associations of ABO blood groups and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2) have attracted a lot of scientific interest, due to a number of studies where such associations have been investigated. One such study has generated enormous public interest.

As to SARS-COV-2 and blood types, initial interest in the field was stimulated by a preprint by Zhao et al., which was initially published on March 16, 2020. Based on their results, individuals with blood group A had a significantly higher risk for acquiring COVID-19 compared with non-A blood groups, whereas individuals with blood group O were found to be at a significantly lower risk for the infection. Less than one month later, another preprint appeared also addressing a possible link between COVID-19 and blood groups, but did not find any significant associations between blood groups and intubation or death. Again one month later, the first report on a genome-wide association study (GWAS), carried out by a European consortium, appeared as a preprint, which was followed by a press release. This was then published as a New England Journal of Medicine (NEJM) paper, again accompanied by a corresponding press release, and apparently all based on the same group of COVID-19 patients receiving oxygen and a control group. The critical considerations outlined herein mainly relate to the preprint by the European consortium, the paper published in NEJM, and the two press releases. The message of all four was that people with blood group A have a much higher risk for respiratory failure during the course of COVID-19 than those with B or O. This caused a huge public reaction (Table 1), resulting in a lot of anxiousness due to headlines being published in the media, such as “People with blood type A more likely to suffer severe coronavirus symptoms, research finds” (Telegraph, UK, 4th June 2020) and TV reports (e.g. News9 India of June 5, 2020). Both the high public interest, as well as possible clinical applications of the findings, warrant a critical analysis of the methods and data applied.

The preprint and its weakness
The European consortium (with K. Ellinghaus and F. Degenhardt from Kiel, Germany, as shared first authors and A. Franke, Kiel, and T. H. Karlsen, Oslo, Norway, as corresponding authors) published the results of a GWAS with COVID-19 patients from Spain and Italy who all received oxygen during the course of the disease. One of two significant association signals was located at chromosomal band 9q34, corresponding to the ABO blood group locus. It was claimed that the ABO blood groups thus are associated with COVID-19 induced respiratory failure “with higher risk for A-positive individuals and a protective effect for blood group O”. Shortly after the preprint’s appearance the headlines and news went viral (Table 1).

In a few media articles, the message was overreached, for example by Medscape, Germany, who stated that an association between COVID-19 mortality and blood groups has been found (12th June 2020). In particular in German-speaking countries, interest in the results of the study was also stimulated by a tweet from Karl Lauterbach, professor of Health Economics and Clinical Epidemiology at the University of Cologne and member of the Deutscher Bundestag, which was frequently cited in public media (Figure 1).

Despite this wide-spread interest, the value of the study suffers from its control group, which comprises a total of 2,381 individuals. According to the preprint, the control group, among others, included “998 randomly selected blood donors at Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan with no evidence of Covid-19 who were genotyped for the purpose of the present study.”. Two further control panels with genotype data derived from previous studies using the same genotyping array were included as well (from Italy n=396 and from Spain n=987). Due to the selection of the control group, the findings do not allow for the conclusion that ABO blood types influence the severity of symptoms, since no comparison has been made between people receiving oxygen versus those mildly affected (e.g. non-hospitalized) as a control group. Accordingly, similar results have to be expected, if blood groups affect one’s chance getting infected at all. This problem was pinpointed early on by some in the public media, for example by The Scientist Magazine (“Ideally, a GWAS analysis would analyze the genomes of people with COVID-19 and compare those who didn’t get very sick to those who experienced severe symptoms, instead of using population-based controls whose exposure to the virus is unknown, says Priya Duggal, a genetic epidemiologist at the Johns Hopkins Bloomberg School of Public Health who did not participate in the study.”; 8th June 2020) and the German Sueddeutsche Zeitung (15th June 2020).

Already at this time, at least one of the authors of this study apparently was well aware of this major shortcoming: “The study was not perfect. Ideally there would be another full group of patients for comparison who were infected but who did not develop the severe disease. This was one reason, said

https://www.youtube.com/watch?v=OfRQ-DYCV6s
<table>
<thead>
<tr>
<th>Headline</th>
<th>Appeared in</th>
<th>Date</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>People with blood type A more likely to suffer severe coronavirus symptoms, research finds</td>
<td>Telegraph, UK, June 4</td>
<td>June 4, 2020</td>
<td>https://www.telegraph.co.uk/global-health/science-and-disease/people-blood-type-likely-suffer-severe-coronavirus-symptoms/</td>
</tr>
<tr>
<td>Study links respiratory illness during Covid to blood groups</td>
<td>Hindustan Times, India</td>
<td>June 4, 2020</td>
<td>https://www.hindustantimes.com/india-news/study-links-respiratory-illness-during-covid-to-blood-groups/story-ueJNt9ZID86h4UGnyCA8el1.html</td>
</tr>
<tr>
<td>Scientists find link between COVID-19 severity and genetics - Patients with blood type A were linked to a 50% increase in the likelihood in needing to get oxygen or go on a ventilator</td>
<td>Jerusalem Post, Israel</td>
<td>June 7, 2020</td>
<td>https://www.jpost.com/international/scientists-find-link-between-covid-19-severity-and-genetics-630413</td>
</tr>
<tr>
<td>Coronavirus, il gruppo sanguigno O protegge davvero di più? [Coronavirus, is blood type O really more protective?]</td>
<td>Corriere della Sera, Italy</td>
<td>June 10, 2020</td>
<td>https://www.corriere.it/salute/cardiologia/20_giugno_10/gruppo-sanguigno-coronavirus-0-protegge-davvero-pu-466d72ba-ab14-11ea-ab2d-35b3b77b559f.shtml</td>
</tr>
<tr>
<td>Bloody hell. How your blood type could increase your risk of dying from coronavirus – and how to find out yours</td>
<td>The Sun, UK</td>
<td>June 12, 2020</td>
<td>https://www.thesun.co.uk/news/11845115/blood-type-increase-risk-dying-coronavirus-how-to-find-your/</td>
</tr>
<tr>
<td>Appeared In</td>
<td>Date</td>
<td>Headline</td>
<td>Link</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Professor Franke, that he could not be confident of the exact risk increase linked to blood type: “It may be 20 per cent, it may be 30 per cent, it may be 50 per cent.” (as quoted in The Australian, 12th June 2020). Nevertheless, a press release by the lead author’s own institution (Universitätsklinikum Schleswig-Holstein) on 10th June 2020 revealed that according to their results “people with blood group A have a roughly 50% elevated risk for a severe course of COVID-19 than people with other blood groups. Vice versa, people with blood group O were protected against severe disease by nearly 50%” (translated from German).

The study received accolade but doubt remains

On 17th June 2020, the paper was published in the New England Journal of Medicine, and the study received recognition. Unfortunately, the problem with the control group became even more complicated because the description was changed from the preprint: “We recruited 998 randomly selected blood donors at Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, who underwent genotyping for the purpose of the present study. A total of 40 of these participants had evidence of the development of anti–SARS-CoV-2 antibodies, all of whom had mild or no Covid-19 symptoms.”

In contrast, according to the preprint, all 998 blood donors did not show evidence of COVID-19. Also, it is unclear if all had been tested for antibodies and by which test. What was the control group then? A pre-COVID-19 population? Apparently not, but maybe in part. Patients infected, but with mild or absent symptoms of COVID-19 constituting part of the controls, make interpretation of the data even more difficult if not impossible. Despite this, a second press release by the lead author’s institution was published on 18th June 2020, which unequivocally concludes: “The study had shown that people with blood group A have an approximately 50 percent higher risk of severe Covid-19 progression than people with other blood groups. In contrast, people with type O blood groups were almost 50 percent better protected against serious covid-19 disease.”. The appearance of the now peer-reviewed paper caused a second wave of headlines (see Table 1). Nevertheless, most notably a large part of the media coverage was gained in the two-week period when only the preprint was available (Figure 2).

The enormous attention is also reflected by the preprint and article metrics, e.g. compared to a paper by Latz et al. also addressing a possible association between blood groups and the severity of COVID-19, but which came to an opposite conclusion (Figure 3). Simultaneously, the publication caused an enormous level of public interest and anxiety as witnessed by the coverage gained in public media (Table 1).

Are additional rules for preprints needed?

How could it happen that, to say the least, a misleading message spread so rapidly and at a preprint stage? What makes the story so appealing for public recognition? It’s not the association with an anonymous gene. Instead, people know about blood groups and many even know about their own. Besides

3. https://idw-online.de/de/news?print=1&id=749683
genetic association there is obviously a direct interest in personal risk. Can we thus blame the hunger of the public for intriguing messages on COVID-19 that might affect people personally? At least this is not the only factor explaining the high public interest in this case. It seems reasonable to speculate that a scientifically more correct interpretation of the limits of the study at the preprint stage and in the press releases might have led to a drastically decreased level of interest by public media, but the message of the study has been made more fascinating by the authors themselves – with their press releases and the preprint. Should thus the preprint system of publishing a piece of work without peer review be blamed?

One of the main arguments in favour of sharing work in its preliminary preprint form is that articles are improved by feedback from a wider group of readers instead of only formal peer review by few experts, and that science works faster if results are made available sooner after being completed. Basically, both principles have worked here. As for the speed, the preprint was published some two weeks earlier than the paper in NEJM. However, it could be said that there was no such need for speed, and more important was the opportunity to gather feedback from a larger community, which has worked nearly perfectly. Currently, there are 39 comments for the preprint by Ellinghaus and coworkers. Of these, some comment on the issues faced with the controls, and this problem was also

https://www.medrxiv.org/content/10.1101/2020.05.31.20114991v1
pinpointed very early on by experts in the public media and, curiously enough, even at least by one of the authors (see above). Moreover, there were also contradictory findings, which were neither appropriately mentioned in the preprint nor in the NEJM paper, e.g. the preprint by Zietz and Tatonetti⁷ that appeared earlier on the same server (medRxiv).

One of the main advantages of a preprint, i.e. the chance to have it critically considered by a larger group of peers, has evaporated here due to the short time between the preprint and appearance of the paper, giving the authors no chance to consider comments and criticism. Of note, even now the preprint has not been corrected, though the control group is apparently not correctly described given that the description in the NEJM is correct.

There is a low level of control until preprints go public, which clearly increases the author’s responsibilities. Aimed at the benefit for the scientific community, preprints have to balance a possible need for speed with “suitable safeguards to protect the public” as well. The case presented here illustrates the adverse effects associated with a loss of such balance and clearly advocates additional rules for preprints. To put it simply, authors should not leave the room while the elephant is still in it. Whenever submitting a manuscript which corresponds to a preprint, a time of some weeks should be given to the extended group of peers to comment on and vice versa, authors should communicate possible comments along with the manuscript and they should declare that they have read and considered all these comments carefully. During that time, there should not be any press releases from the authors. In a comment on their study⁵ investigating possible associations between the severity of COVID-19 and ABO blood groups, Latz et al. made the rigorous statement that they are confident their principle finding “will help debunk the kinds of clinically unfounded rumours and misinformation that can readily gain traction in the midst of a pandemic, and in some cases become part of accepted medical practice”⁶. Certainly, we as scientists have a direct responsibility to avoid this type of misinformation.

And what on the actual news on COVID-19 severity and blood groups? “Risk does not depend (much) on blood type” stated The New York Times on 15 July 2020. The Latz et al.⁵ study, based on 1,289 COV+ individuals, concluded that blood type was not associated with intubation or mortality in COVID-19 patients. Similarly, the recently published second version of the preprint by Zietz and Tatonetti even revealed a significantly lesser risk for intubation for individuals with blood group A.

Data availability

No data is associated with this article.

References

Acknowledgements

The many helpful critical comments and suggestions of Dr. B. Rommel and Prof. Dr. R. Stick, University of Bremen, are acknowledged.
Open Peer Review

Current Peer Review Status: ✔

Version 1

Reviewer Report 25 September 2020

https://doi.org/10.5256/f1000research.29068.r71681

© 2020 Bangham C. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Charles Bangham
Department of Immunology, Imperial College London, London, W2 1PG, UK

In this article, Bullerdiek makes some cogent criticisms of the rapid publication of preprints, with specific reference to a recent publication on the association between ABO blood groups, SARS-CoV-2 infection and the resulting disease, COVID-19. He concludes by proposing that additional rules should be observed by the authors of preprints. Specifically, three rules are suggested:

1. A time of some weeks should be given to the extended group of peers to comment on and vice versa;

2. authors should communicate possible comments along with the manuscript and they should declare that they have read and considered all these comments carefully; and

3. during that time, there should not be any press releases from the authors.

Comments

1. The main purposes of publishing a preprint are to make findings widely known without delay; to solicit responses and critical appraisal; and to establish the authors' priority in a competitive field. There is little logic, on any of these grounds, in publishing a preprint a very short time (two weeks, as in the present instance) before the print version. I concur with Bullerdiek on this principle.

2. The publication of a preprint increases the normal responsibilities on the authors to be accurate and, in particular, to respond appropriately to criticism both in the final 'print' version and also in revised preprints if serious issues are identified or if there will be a long delay before the print version is published.

3. It is impossible to foresee, and still less to prevent, the distortion or misinterpretation that may follow the publication of a scientific paper. However, in circumstances of exceptionally wide and intense public interest, such as in the present coronavirus pandemic, it is proportionally more important to make public announcements such as press releases that are worded cautiously, in such a way as to minimize the chance of exaggeration or
4. Genetic association studies, by definition, can identify associations but cannot identify the mechanism of any observed association. In the present case of the preprint on ABO blood groups and SARS-CoV-2 infection by Ellinghaus, Degenhardt et al., there is a stark difference between two potential causes of the observed association. That is, ABO blood group might influence either the risk of acquiring SARS-CoV-2 infection, or the severity of a resulting illness, COVID-19; these are not mutually exclusive possibilities, and both might be true. The broad conclusion of the Ellinghaus, Degenhardt et al preprint, that ABO blood group influences the risk of COVID-19, is consistent with recent publications from several other groups, but it is not yet certain whether the association is due to an effect on acquisition of infection or on the pathogenesis of the resulting disease. The recently revised preprint by Zietz and Tatonetti, cited by Bullerdiek, favours the notion that the primary effect of ABO blood group in SARS-CoV-2 infection is on the risk of acquisition of the infection, not on disease severity. Further studies are needed to identify potential mechanisms, in particular of the apparent protective effect of blood group O.

What, then, of the proposed additional rules for the publication of preprints, listed above? I believe that the first two should be strongly recommended, but it is difficult and inappropriate to mandate strict numerical limit on the time between preprint and final publication of a peer-reviewed paper. However, I believe that press releases should not be forbidden: the authors remain responsible for the decision whether it is appropriate and helpful to make a press release, and for the content and style of any release.

Is the topic of the opinion article discussed accurately in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Virology, immunology, genetics.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com