Association between convalescent plasma and the risk of mortality among patients with COVID-19: a meta-analysis

Shinta Oktya Wardhani¹, Jonny Karunia Fajar², Laksmi Wulandari³, Gatot Soegiarto⁴, Yeni Purnamasari⁴, Anisa Asmiragani⁵, Helnida Anggun Maliga⁵, Muhammad Ilmawan⁵, Gloriana Seran⁶, Dheka Sapti Iskandar⁷, Conchita Emiliana Ndapa⁸, Viviana Hamat⁸, Rafika Ajeng Wahyuni⁵, Linda Oktaviana Suci Cynthia⁵, Feronika Maryanti Maarang⁹, Yosef Andrian Beo⁹, Olivera Agnes Adar⁸, Iraky Mardya Rahmadhan⁵, Emilia Tiara Shantikaratri⁵, Ayu Sekarani Damana Putri⁵, Rizqa Wahdini⁵, Endang Pati Broto¹⁰, Agnes Wanda Suwanto¹¹, Fredo Tamara², Aditya Indra Mahendra¹², Eden Suryoiman Winoto¹², Pratista Adi Krisna², Harapan Harapan¹²

¹Division of Hematology and Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
²Brawijaya Internal Medicine Research Center, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
³Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60286, Indonesia
⁴Division of Allergy & Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60286, Indonesia
⁵Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
⁶Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
⁷Department of Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
⁸Department of Midwifery, Faculty of Medicine, University Brawijaya, Malang, 65145, Indonesia
⁹Department of Nursing, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
¹⁰Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, 60286, Indonesia
¹¹Department of Radiology, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
¹²Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia

Abstract

Background: Convalescent plasma (CCP) has been used for treating some infectious diseases; however, the efficacy of CCP in coronavirus disease 2019 (COVID-19) remains controversial. The aim of this research was to assess the efficacy of CCP as an adjunctive treatment in COVID-19 patients.
Methods: Four bibliographic databases and a preprint database were searched for potentially relevant articles. Mortality rates between patients treated with standard treatment and standard treatment with CCP were compared using a Z test.

Results: A total of 1,937 patients treated with CCP and 3,405 patients without CCP retrieved from 12 studies were included. The risk of mortality was 1.92-fold higher in patients without CCP compared to patients treated with CCP (OR: 1.92; 95%CI: 1.33, 2.77; p=0.0005). In severe COVID-19 sub-group analysis, we found that patients without the CCP had a 1.32 times higher risk of mortality than those treated with the CCP (OR: 1.32; 95%CI: 1.09, 1.60; p=0.0040).

Conclusions: CCP, as adjunctive therapy, reduces the mortality rate among COVID-19 patients.

Keywords
convalescent plasma, passive immunization, COVID-19, mortality, outcomes

This article is included in the Disease Outbreaks gateway.

This article is included in the Coronavirus collection.
Corresponding author: Jonny Karunia Fajar (gembyok@gmail.com)

Author roles: Wardhani SO: Conceptualization, Investigation, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Fajar JK: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Software, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Wulandari L: Conceptualization, Investigation, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing; Soegiarto G: Conceptualization, Formal Analysis, Investigation, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing; Purnamasari Y: Methodology, Software; Asmiragani A: Investigation, Methodology, Software; Maliga HA: Investigation, Methodology, Software; Ilmawan M: Investigation, Methodology, Software; Seran G: Data Curation, Investigation, Project Administration, Resources, Visualization; Iskandar DS: Data Curation, Project Administration, Resources, Visualization; Hamat V: Data Curation, Investigation, Resources, Visualization; Wahyuni RA: Investigation, Project Administration, Resources, Visualization; Cynthia LOS: Data Curation, Investigation, Project Administration, Resources, Visualization; Maaran FM: Data Curation, Investigation, Project Administration, Resources; Beto YA: Data Curation, Project Administration, Resources, Visualization; Adar OA: Data Curation, Project Administration, Resources, Visualization; Rakhamdhan IM: Data Curation, Project Administration, Resources, Visualization; Shantikaratri ET: Data Curation, Project Administration, Resources, Visualization; Putri ASD: Data Curation, Project Administration, Resources, Visualization; Wahdini R: Data Curation, Investigation, Project Administration, Resources; Broto EP: Conceptualization, Project Administration, Resources; Suwanto AW: Conceptualization, Resources, Visualization; Tamara F: Data Curation, Project Administration, Resources, Visualization; Mahendra AI: Data Curation, Project Administration, Resources, Visualization; Winoto ES: Data Curation, Methodology, Resources, Visualization; Harapan H: Supervision, Validation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2021 Wardhani SO et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

First published: 03 Feb 2021, 10:64 https://doi.org/10.12688/f1000research.36396.1
Introduction

The management of coronavirus disease 2019 (COVID-19) remains challenging. While the guideline for the management of COVID-19 has been established,1-3 the mortality rate of COVID-19 remains increased over the periods.4,5 The guideline suggests that several treatments, including antiviral, hydroxychloroquine, steroid, anticoagulation, and other supportive treatments, should be used to treat patients with COVID-19.1-3 However, recent evidence from large scale studies failed to clarify the efficacy of those suggested treatments.6-8 Moreover, the findings from the World Health Organization (WHO) solidarity trials also failed to clarify the benefits of hydroxychloroquine, remdesivir, interferon regimens, and lopinavir in the management of COVID-19.9 Therefore, new approaches to COVID-19 management are required.

Convalescent plasma (CCP), an immunological therapy, is suggested to have promising efficacy for managing several infectious diseases.3 CCP, a strategy of passive immunization, was first introduced by von Behring and Kitasato in 1890. Initially, it was used to manage diphtheria and other infectious diseases such as scarlet fever and pertussis.10 Moreover, due to its good efficacy, this therapy was also used for the management of Ebola, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS).11 In patients with MERS, SARS, and Ebola, the clinical improvement and reduced mortality rate were observed in patients receiving CCP than patients without CPP.12 However, the efficacy of CCP against COVID-19 is conflicting. Furthermore, previous meta-analyses resulted in inconclusive findings due to the lack of structured methodology. Therefore, a holistic meta-analysis is needed to provide insight into the clinical efficacy of CCP for the management of COVID-19.

Methods

Study design

A systematic review and meta-analysis covering the period July 2020 - December 2020 was conducted to assess the efficacy of CCP as an adjunctive treatment in COVID-19 patients. Studies from prominent bibliographic databases were searched, and the protocols followed the checklist from Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA).13

Eligibility criteria

Relevant articles were assessed for inclusion and exclusion criteria before the final analysis. Our analysis included articles with the following criteria: (1) observational or randomized controlled trial studies; (2) providing sufficient data of COVID-19 diagnosis methods; and (3) well-identified methodologies represented with Newcastle-Ottawa Scale (NOS). Case reports, case series, letters to the editor, reviews, commentaries, low method quality, and those with pre-post test comparison were excluded.

Search strategy and data extraction

Relevant studies in four bibliographic databases (Embase, PubMed, Web of Science, and Cochrane) and a preprint database MedRix were searched as of 2 December 2020. The searches limited to English only using Medical Subjects Heading: (“COVID-19” OR “SARS-CoV-2”) AND (“convalescent plasma” OR “serotherapy” OR “hyperimmune globulin therapy” OR “convalescent plasma treatment”). A reference list of the relevant articles was also retrieved for additional references. Information of: (1) name of the first author; (2) year of publication; (3) country of origin; (4) sample size of cases and controls, (5) CCP administration, and (6) mortality rate were collected from each article.

Assessment of the methodology quality

The quality of potential papers was assessed using the Newcastle-Ottawa Scale (NOS).14 This scoring system evaluates the sample selection, group comparison, and the outcome. The quality of the articles could be classified as low, moderate, and high quality. Articles with low quality were excluded from our analysis. The assessment was carried out by three independent investigators (MI, AAA & YP), and when there was a discrepancy among the investigators, a discussion was performed with a senior researcher (JKF).

Outcome measure

The primary outcome measure was all causes of mortality among COVID-19 patients treated with and without CCP. The predictor variable was COVID-19 patients treated with CCP. A sub-group analysis was conducted based on the severity of COVID-19 patients treated with CCP (e.i. mild and severe).

Statistical analysis

The association between CCP and the reduction of the risk of mortality among COVID-19 patients was assessed using a Z test. Before assessing the association, the potency of bias and heterogeneity was assessed. To assess the risk of bias, an Egger test was employed to calculate tau-squared, and a p-value of less than 0.05 indicates that the potency of bias was
found. A Q test was used to assess the heterogeneity among the included papers. The p-value of less than 0.10 was considered that heterogeneity across the studies was found, and the correlation was therefore determined using a random-effect model; otherwise, a fixed-effect model was employed. All analyses were carried out using Review Manager (Revman Cochrane, London, UK) version 5.3, and the cumulative calculation was presented using a forest plot.

Results

Studies selection
A total of 1,143 papers were identified, and 1,105 papers were excluded because they had irrelevant topics. A total of 38 papers were included for review in full-text, and 26 additional papers were excluded because of review, pre-post test model, commentary, and low-quality papers. In the final process, 12 papers were included in our analysis.15-26 The article selection flowchart is depicted in Figure 1, and the study characteristics are presented in Table 1.

CCP efficacy against COVID-19
A total of 1,937 patients treated with CCP and 3,405 patients without CCP, collected from 12 papers, were included in our analysis. Data suggest that COVID-19 patients without the CCP had a 1.92-fold higher risk of mortality than patients treated with the CCP (OR: 1.92; 95%CI: 1.33, 2.77; p=0.0005) (Figure 2A). A sub-group analysis among severe COVID-19 patients who were treated with CCP was conducted. This sub-group consisted of nine papers with 1,458 patients treated with CCP and 2,706 patients without CCP. The data revealed a 1.32-fold higher risk of mortality in COVID-19 patients without CCP compared to patients treated with CCP (OR: 1.32; 95%CI: 1.09, 1.60; p=0.0040) (Figure 2B).

![Figure 1. A flowchart of study selection in our meta-analysis.](image-url)
Table 1. Baseline characteristics of articles included in our meta-analysis.

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>City</th>
<th>Hospital</th>
<th>Sample size</th>
<th>CCP</th>
<th>Control</th>
<th>CCP volume</th>
<th>Recipient</th>
<th>NOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abolghassemi et al 2020</td>
<td>Iran</td>
<td>Mixed</td>
<td>Multicenter</td>
<td>115</td>
<td>74</td>
<td></td>
<td>500 mL</td>
<td>Mild and severe cases</td>
<td>9</td>
</tr>
<tr>
<td>Altuntas et al 2020</td>
<td>Turkey</td>
<td>Mixed</td>
<td>Multicenter</td>
<td>888</td>
<td>888</td>
<td></td>
<td>200-600 mL</td>
<td>Severe cases</td>
<td>8</td>
</tr>
<tr>
<td>Chen et al 2020</td>
<td>China</td>
<td>Hangzhou</td>
<td>Zhejiang University</td>
<td>19</td>
<td>10</td>
<td></td>
<td>200-500 mL</td>
<td>Severe cases</td>
<td>7</td>
</tr>
<tr>
<td>Gharbharan et al 2020</td>
<td>Netherlands</td>
<td>Mixed</td>
<td>Multicenter</td>
<td>43</td>
<td>43</td>
<td></td>
<td>300 mL</td>
<td>Mild and severe cases</td>
<td>8</td>
</tr>
<tr>
<td>Hegerova et al 2020</td>
<td>USA</td>
<td>Washington</td>
<td>Multicenter</td>
<td>20</td>
<td>20</td>
<td></td>
<td>200 mL</td>
<td>Severe cases</td>
<td>9</td>
</tr>
<tr>
<td>Li et al 2020</td>
<td>China</td>
<td>Wuhan</td>
<td>Multicenter</td>
<td>52</td>
<td>51</td>
<td></td>
<td>100 mL</td>
<td>Severe cases</td>
<td>8</td>
</tr>
<tr>
<td>Rasheed et al 2020</td>
<td>Iraq</td>
<td>Baghdad</td>
<td>Multicenter</td>
<td>21</td>
<td>28</td>
<td></td>
<td>400 mL</td>
<td>Severe cases</td>
<td>8</td>
</tr>
<tr>
<td>Salazar et al 2020 (a)</td>
<td>US</td>
<td>Mixed</td>
<td>Multicenter</td>
<td>321</td>
<td>582</td>
<td></td>
<td>NA</td>
<td>Mild and severe cases</td>
<td>8</td>
</tr>
<tr>
<td>Salazar et al 2020 (b)</td>
<td>US</td>
<td>Mixed</td>
<td>Multicenter</td>
<td>85</td>
<td>158</td>
<td></td>
<td>NA</td>
<td>Severe cases</td>
<td>9</td>
</tr>
<tr>
<td>Xia et al 2020</td>
<td>China</td>
<td>Wuhan</td>
<td>Wuhan Huoshenshan Hospital</td>
<td>138</td>
<td>1430</td>
<td></td>
<td>1200 mL</td>
<td>Severe cases</td>
<td>8</td>
</tr>
<tr>
<td>Zeng et al 2020</td>
<td>China</td>
<td>Hangzhou</td>
<td>Multicenter</td>
<td>6</td>
<td>15</td>
<td></td>
<td>300 mL</td>
<td>Severe cases</td>
<td>9</td>
</tr>
</tbody>
</table>

Note: CCP, convalescent plasma; NOS, Newcastle-ottawa scale.
Heterogeneity and potency of bias across the studies

The analysis revealed evidence of heterogeneity in total case of COVID-19. Therefore, a random-effect model was applied to assess the association. In the severe COVID-19 sub-group, we found no heterogeneity, and we used a fixed-effect model to evaluate the correlation. Our analysis using an Egger test found no publication bias in both the total and the severe COVID-19 sub-group.

Discussion

Our data suggest that CCP treatment associated with a reduction of mortality both in all cases and severe COVID-19 patients. Our current findings are consistent with the results of previous meta-analyses.27-32 The theory underlying the mechanism of CCP in COVID-19 patients remains open to controversy. Briefly, plasma transfer is the potential aspect that bridges the CCP and the reduced risk of mortality in COVID-19 patients. Plasma consists of various immunity components, including antibodies, anti-inflammatory cytokines, clotting and or anti-clotting factors, albumin, and protein C and S.33,34 It is believed that CCP in COVID-19 may modulate the immune response through antiviral effects and has immunomodulatory effects.35 Antiviral effects of CCP may occur through neutralizing antibodies, and it was reported that IgG of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and IgM SARS-CoV-2 were the primary isotype antibodies identified from COVID-19 patients treated with CCP.36 This humoral immune response may inhibit protein S of SARS-CoV-2.37 Thereafter, they may exert the protective effects against COVID-19. The immunomodulatory effects of CCP may occur through the neutralization of cytokines and complements.35,38 These effects may inhibit the overactive immune system, including cytokine storm, complement activation, and hypercoagulable state regulation.39 These mechanisms may be responsible for causing clinical improvement of COVID-19 patients. Of them, it was considered that immunoglobulin transfer is the essential factor in modulating the protective effect of CCP.40 In SARS and influenza, it was reported that immunoglobulin transfer plays a vital role in governing clinical

Figure 2. Forest plot of the association between convalescent plasma and the risk of mortality. A). All cases (OR: 1.92; 95%CI: 1.33, 2.77; p = 0.0005; p Egger: 0.3620; p Heterogeneity: 0.0600; I-squared: 43.00%). B). Severe COVID-19 (OR: 1.32; 95%CI: 1.09, 1.60; p = 0.0040; p Egger: 0.3790; p Heterogeneity: 0.1200; I-squared: 37.00%).
improvement. Moreover, in MERS, the CCP administration with the titers of antibodies 1:80 provided a significant immune response, and the titers of antibodies 1:40 did not provide a similar response. Additionally, in Ebola, MERS, and SARS, the antibodies from the CCP may bind to the CD4 binding site on the viral envelope, and therefore may reduce the viral load and the risk of infection of the new cells. It was also supported by previous studies that antibody titers from CCP donors also governed the clinical improvement of COVID-19 patients treated with CCP, suggesting that antibody transfer might influence the outcomes of clinical improvement.

Six meta-analyses assessing the role of CCP in COVID-19 have been reported (Table 2). However, they had some significant limitations: (a) they involved a smaller sample size. In our current study, we had a relatively larger sample size; (b) some studies did not perform meta-analysis calculations to synthesize the data; (c) previous studies included several case reports and case series in which should be excluded in the meta-analysis; (d) previous meta-analyses assessed the role of CCP in similar infectious diseases (SARS and influenza), and the results were implemented to the case of COVID-19; and (e) previous meta-analyses performed a mixed calculation where the data of the case vs. control model were combined with the data of pre-post intervention models, which might provide a high risk of bias due to the final effect that might be caused by other interventions. In the present meta-analysis, we only calculated the model of the case (standard treatment and CCP) vs. control (standard treatment only) and therefore might provide a better correlation.

In the present study, we emphasized that CCP provided good efficacy to reduce the risk of mortality among COVID-19 patients. Our findings might contribute to better management of COVID-19 patients, particularly to prevent the risk of mortality. It is expected that a medical council should elaborate on the standard procedures of CCP, including the dosage, donor criteria, side effects management, and post-intervention management. Since early administration of CCP provided better clinical outcomes than those with later intervention, the appropriate time of CCP administration should be determined, and further studies are warranted.

Several important limitations of this study should be discussed. Some confounding factors that might govern the final outcomes were not controlled, including the immunological status, the dosage of CCP, time of intervention, donor criteria, the titers of antibodies, comorbidities, and transmission area. The majority of the included papers were retrospective studies, and therefore a further meta-analysis of randomized-controlled trials with a bigger sample size might provide a better conclusion.

Conclusion

Administration of the CCP is associated with a lower risk of mortality among COVID-19 patients compared to those without CCP, and this highlights its potency to be used for the treatment of COVID-19. However, studies are warranted to formulate the dosage, time of intervention, donor criteria, and the titers of antibodies to optimize the effects.
References

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text
Open Peer Review

Current Peer Review Status: ❌

Version 1

Reviewer Report 15 February 2021

https://doi.org/10.5256/f1000research.39458.r78924

© 2021 Arab-Zozani M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Morteza Arab-Zozani
Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran

This meta-analysis aimed to investigate the association between convalescent plasma and the risk of mortality among patients with COVID-19. This is a great area of research but, in my opinion, the manuscript needs some major revisions as follows:

- Please indicate the name of the searched databases in the abstract section.
- Please indicate the quality appraisal checklist in the abstract section.
- Please indicate the method for investigating the heterogeneity and publication bias in the abstract section.
- Please indicate the type of the included studies in the abstract, results, and table 1.
- What is your reason for selecting this period for your search?
- Search strategy is not complete.
- Please restructure the method section following the PRISMA item as you claim.
- There are some problems regarding figure 1. Was there no duplicate record? It does not make much sense.
- It needs to mention the type of the included studies and then we can speak about the quality appraisal checklist. It seems that NOS is not sufficient. NOS is for nonrandomized studies.
- Please indicate inter-rater reliability between three raters.
- Result section, please add a subheading for "study characteristics" based on PRISMA and
first write a brief and then refer to table 1. Also, add the type of the control in column control.

- Figure 1 has some problems. Your study is a meta-analysis. How were 11 studies included in qualitative synthesis? Which qualitative synthesis?

- There is a 6% difference between I² for A and B, what is your rationale for selecting the fixed or random-effect model? Please provide a reference for your claim. Please add the details in the method section.

- Please add the funnel plot as a supplement.

- Please remove table 2 from the discussion and also discuss the added value of your study regarding the existing meta-analysis. What is the novelty of your work?

- The conclusion is very optimistic. How did you come to that conclusion based solely on mortality?

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Health-related issues and systematic review and meta-analysis methodology.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.
The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com