RESEARCH ARTICLE

The diagnostic yield of whole exome sequencing as a first approach in consanguineous Omani renal ciliopathy syndrome patients [version 1; peer review: 2 approved with reservations]

Intisar Al Alawi¹,², Mohammed Al Riyami³, Miguel Barroso-Gil¹, Laura Powell¹, Eric Olinger¹, Issa Al Salmi³,⁴, John A. Sayer¹,⁵,⁶

¹Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
²National Genetic Center, Ministry of Health, Muscat, Oman
³Renal Medicine Department, Ministry of Health Royal Hospital, Muscat, Oman
⁴Oman Medical Speciality Board, Muscat, Oman
⁵Renal Services, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Tyne and Wear, NE77DN, UK
⁶Newcastle Biomedical Research Centre, NIHR, Newcastle upon Tyne, Tyne and Wear, NE45PL, UK

Abstract

Background: Whole exome sequencing (WES) is becoming part of routine clinical and diagnostic practice. In the investigation of inherited cystic kidney disease and renal ciliopathy syndromes, WES has been extensively applied in research studies as well as for diagnostic utility to detect various novel genes and variants. The yield of WES critically depends on the characteristics of the patient population.

Methods: In this study, we selected 8 unrelated Omani children, presenting with renal ciliopathy syndromes with a positive family history and originating from consanguineous families. We performed WES in affected children to determine the genetic cause of disease and to test the yield of this approach, coupled with homozygosity mapping, in this highly selected population. DNA library construction and WES was carried out using SureSelect Human All Exon V6 Enrichment Kit and Illumina HiSeq platform. For variants filtering and annotation Qiagen Variant Ingenuity tool was used. Nexus copy number software from BioDiscovery was used for evaluation of copy number variants and whole gene deletions. Patient and parental DNA was used to confirm mutations and the segregation of alleles using Sanger sequencing.

Results: Genetic analysis identified 4 potential causative homozygous variants each confirmed by Sanger sequencing in 4 clinically relevant ciliopathy syndrome genes, (TMEM231, TMEM138, WDR19 and BBS9),
leading to an overall diagnostic yield of 50%.

Conclusions: WES coupled with homozygosity mapping provided a diagnostic yield of 50% in this selected population. This genetic approach needs to be embedded into clinical practise to allow confirmation of clinical diagnosis, to inform genetic screening as well as family planning decisions. Half of the patients remain without diagnosis highlighting the technical and interpretational hurdles that need to be overcome in the future.

Keywords
renal ciliopathy, cystic kidney disease, Oman, whole exomes sequencing

Corresponding author: John A. Sayer (john.sayer@ncl.ac.uk)

Author roles:
- Al Alawi I: Formal Analysis, Investigation, Methodology
- Al Riyami M: Methodology
- Barroso-Gil M: Investigation, Writing – Review & Editing
- Powell L: Investigation, Writing – Review & Editing
- Olinger E: Software, Writing – Review & Editing
- Al Salmi I: Investigation, Methodology, Supervision
- Sayer JA: Conceptualization, Funding Acquisition, Investigation, Methodology, Project Administration, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: Al Alawi was supported by the Ministry of Health and The Research Council Grant (ORG/HSS/14/015), Oman. MB-G is funded by Kidney Research UK (ST_001_20171120) and the Northern Counties Kidney Research Fund. LP is funded by the Medical Research Council Discovery Medicine North Training Partnership. EO is supported by an Early Postdoc Mobility Stipendium of the Swiss National Science Foundation (P2ZHP3_195181) and Kidney Research UK (Paed_RP_001_20180925). JAS is funded by Kidney Research UK and the Northern Counties Kidney Research Fund.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Al Alawi I et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Al Alawi I, Al Riyami M, Barroso-Gil M et al. The diagnostic yield of whole exome sequencing as a first approach in consanguineous Omani renal ciliopathy syndrome patients [version 1; peer review: 2 approved with reservations] F1000Research 2021, 10:207 https://doi.org/10.12688/f1000research.40338.1

First published: 12 Mar 2021, 10:207 https://doi.org/10.12688/f1000research.40338.1
Introduction
There are over 750 million people worldwide affected with chronic kidney disease (CKD), a disease burden that is much higher than those living with diabetes, cancer or even AIDS/HIV\(^1\). Inherited kidney diseases and renal ciliopathy syndromes are one of the major contributors to CKD burden, where up to 10% of adults and over 70% of children reaching end stage kidney disease (ESKD) are expected to harbour genetic causes\(^2\). However, studying such rare diseases has considerable challenges mainly due to the small size of patient cohorts negatively affecting progress of treatments and commercial feasibility. Collaborative research and progress of new technologies and methodologies are strategic to overcoming these challenges.

WES is becoming part of routine clinical and diagnostic practice\(^3\). Focusing only on protein-coding regions through WES decreases the sequencing costs and produces manageable genetic data for interpretation, which enhances its extensive usage in diagnosis leading to the discovery of previously unrecognized renal disease genes and disorders\(^4\). In the case of heterogeneous renal ciliopathies, WES has been extensively applied in research studies as well as for diagnostic utility to detect various novel genes and variants\(^5\). In this study, WES was used to determine the genetic causes of cystic kidney disease and renal ciliopathy syndromes in a group of 8 unrelated Omani children from consanguineous families. As this study shows, the focus of nephrogenetics in Oman is primarily to establish an accurate genetic diagnosis to explain clinical phenotypes using the significantly improved diagnostic power of genomic technologies.

Methods
Ethical approvals and patients’ inclusion and clinical evaluation
This study was approved by the North East-Newcastle & North Tyneside 1 Research Ethics Committee (18/NE/350).

Patients were identified and recruited from paediatric referrals for investigation of inherited kidney disease to the nephrology services within the Ministry of Health Hospital, Muscat, Oman between 2015 and 2018. Whole blood (1.5-2.5 ml in EDTA) samples were collected specifically for this study and used for extraction of genomic DNA. DNA samples from affected and other family members were given an anonymised sample number. All patients had clinical features strongly suggestive of an inherited renal ciliopathy. Written and informed consent was obtained from the parents / guardians of each patient, and any family members (including parents and siblings) involved in this study.

Clinical information relating to patient presentation, phenotype and family pedigree structure, with an emphasis on familial kidney disease was obtained, following informed consent for access to the medical records. Family pedigrees were drawn using Invitae\(^\circ\) online tool (https://familyhistory.invitae.com).

DNA isolation, library preparation and exome sequencing
gDNA was isolated from whole blood of patients and the available family members using Hamilton’s Microlab\(^\circ\) STAR\(^\text{TM}\), according to the manufacturer protocol. DNA extraction was performed in the National Genetic Centre in Oman. DNA library construction and WES were outsourced to EuroFins GATC Biotech (Germany) or Novogene Co., Ltd (China). SureSelect Human All Exon V6 Enrichment Kit (Agilent Technologies, CA, USA) and Illumina HiSeq platform (Illumina, San Diego, CA, USA) were used. Analyses of raw data (FASTQ format) were performed including sequence reads mapping to the human reference genome hg19 using BWA (Li and Durbin, 2009), removal of PCR duplicates using Picard (http://broadinstitute.github.io/picard/), alignment refinement using GATK, coverage analysis and SNP and indel calling using GATK’s Haploype Caller (McKenna et al., 2010).

Variant and CNV detection and annotation
SNP and indel VCF files were investigated using Qiagen Variant Ingenuity tool for variants filtration and annotation. Nexus copy number software from BioDiscovery (9.0) was used for CNVs analysis and visualization. To detect regions of homozygosity, WES genotype data were used to create homozygosity mapping using the online homozygosity mapper tool (http://www.homozygositymapper.org/).

Variant validation by Sanger sequencing
Sanger sequencing was utilized to confirm suspected disease-causing variants and their segregation if DNA samples from parents and other family members were available. Primer3 was utilized to design primer sequences (http://primer3.ut.ee/) (Extended Data Table 1\(^\circ\)). PCR amplification was performed using Taq PCR master mix (Qiagen) kit, as per the manufacturer instructions. Sanger sequencing was outsourced to EuroFins GATC Biotech (Germany). The obtained sequences were assembled and aligned compared to a reference sequence using the SequencePilot 4.2.2 software (JSI Medical Systems GmbH).

Results
Patient characteristics
WES was carried out for 8 unrelated paediatric patients with an age range of 3 months to 6 years of age (5 female, 3 male) with a clinical suspicion of a renal ciliopathy syndrome and known consanguinity as demonstrated by pedigree diagrams (Extended data Figure 1\(^\circ\)). This was a diagnostic-naïve population without prior genetic analysis. Patients had a variety of clinical features, renal and extra-renal, with 5 probands reaching ESKD within 5 years of life (Table 1). Seven out of 8 had a positive family history of kidney disease and 6 had extra-renal manifestations typical of ciliopathy syndromes which included Senior-Løken syndrome, Joubert syndrome, Meckel syndrome and Bardet-Biedl syndrome (Table 1).
Exome sequencing data
Quality control of WES revealed that >99% of the reads were properly mapped to the reference genome. The details of the depth, coverage and target sequences covered are summarized in Extended data Table 2. The average coverage depth was 145.9. Comparable coverage of target coding regions was achieved among the 8 cases with an average of 96.4% of the exome being covered at least 20-fold (Extended data Table 2). Homozygosity mapping of all patients confirmed large regions of homozygosity, typical of known parental consanguinity (Extended data Figure 2).

Molecular genetic findings
A molecular genetic diagnosis was obtained in 4 out of the 8 patients (Figure 1), leading to an overall diagnostic yield of 50% (Table 2). Four different homozygous single nucleotide variants (SNVs) were detected in 4 known ciliopathy genes (TMEM231, TMEM138, WDR19 and BBS9) and were confirmed by Sanger sequencing (Figure 1). Three of the mutations were missense mutations affecting highly conserved amino acids (Extended Data Figure 3) whilst the fourth was a splice-site mutation (Figure 2). All tested samples were examined for mutations in ACMG actionable genes but none were identified.

The identified causative variant in M46 was novel (c.710A>G; p.Y237C in TMEM231) and has not been previously reported in any databases. This homozygous missense change is found in a large region of homozygosity on Chromosome 16 (Extended data Figure 2) and is predicted by Sorting Intolerant from Tolerant (SIFT) to be damaging, PolyPhen-2 to be possibly damaging and MutationTaster to be disease causing. The Y237 amino acid in TMEM231 is conserved to Caenorhabditis elegans (Extended data Figure 3). Mutations in TMEM231 are known to cause both Joubert syndrome and Meckel syndrome (Extended Data Table 3), and the clinical phenotype of patient M48, which included encephalocele, polydactyly and polycystic kidney disease and early onset ESKD, is consistent with a Meckel-like ciliopathy syndrome.

The identified causative variant in M48 was a known allele (c.389A>G; p.Y130C in TMEM138) and has been previously reported in a child with Joubert syndrome and a cerebello-retinal-renal phenotype. This homozygous missense change is found in a narrow region of homozygosity on Chromosome 11 (Extended data Figure 2) and is predicted by SIFT to be deleterious, PolyPhen-2 to be probably damaging and MutationTaster to be disease causing. The Y130 amino acid in TMEM138 is conserved to Danio rerio (Extended data Figure 3). Mutations in TMEM138 are known to cause Joubert syndrome (Extended data Table 4), and the clinical phenotype of patient M48, which included encephalocele, polydactyly and polycystic kidney disease and early onset ESKD, is consistent with a Joubert syndrome ciliopathy.

Table 1. Clinical characteristics of Omani patients.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Gender</th>
<th>Age at referral</th>
<th>Clinical features</th>
<th>Additional clinical features</th>
<th>CKD stage</th>
<th>Family history of kidney disease</th>
<th>Parental consanguinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M43</td>
<td>F</td>
<td>3 y</td>
<td>Nephronophthisis</td>
<td>DD, right hip dysplasia, failure to thrive.</td>
<td>5 (ESKD at 3 y)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>M44</td>
<td>F</td>
<td>2 y</td>
<td>Cystic kidney disease</td>
<td>Hypertension, liver fibrosis</td>
<td>5 (ESKD at 2 y)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>M46</td>
<td>F</td>
<td>3 m</td>
<td>Meckel syndrome with cystic kidneys</td>
<td>Dysmorphic features, occipital encephalocele, polydactyly, diaphragmatic hernia</td>
<td>5 (ESRD at 1 y)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>M47</td>
<td>F</td>
<td>5 y</td>
<td>Cystic kidney disease</td>
<td>Retinitis pigmentosa, conductive hearing loss</td>
<td>5 (ESKD at 5 y)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>M48</td>
<td>M</td>
<td>3 y</td>
<td>Joubert syndrome with cystic kidneys</td>
<td>DD, hypotonia, poor visual acuity, brain MRI showed molar tooth malformation</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>P3</td>
<td>M</td>
<td>3 y</td>
<td>Cystic kidney disease</td>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>P18</td>
<td>M</td>
<td>6 y</td>
<td>Nephronophthisis</td>
<td>Hypertension, DD and retinal dystrophy.</td>
<td>5 (ESKD at 5 y)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N36</td>
<td>F</td>
<td>1 y</td>
<td>Cystic kidney disease</td>
<td>Post-axial polydactyly</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

CKD, chronic kidney disease; DD, developmental delay; ESKD, end stage kidney disease; F, female; M, male; m, month; y, year.
The identified causative variant in P18 was a known allele (c.3553G>A; p.R1178Q) in WDR19 and has been previously reported in cases of nephronophthisis (NPHP)-related ciliopathies with retinal and liver involvement, Senior-Løken syndrome and more complex ciliopathies. This homozygous missense change is found in a large region of homozygosity on Chromosome 4 (Extended data Figure 2) and segregation of the pathogenic causative allele in WDR19 with P18’s family members was confirmed. The missense allele is predicted by SIFT to be tolerated, PolyPhen-2 to be probably damaging and MutationTaster to be disease causing. The R1178 amino acid in WDR19 is conserved to C.elegans (Extended data Figure 3). Mutations in WDR19 are associated with a wide spectrum of ciliopathies (Extended data Table 5), and the clinical phenotype of patient P18, which included NPHP and early onset ESKD and retinal dystrophy is consistent with a Senior-Løken syndrome.

The identified causative variant in N36 was a known splice-site allele (c.1789+1G>A in BBS9) and has been previously reported in patients with Bardet-Biedl syndrome (BBS) and more complex ciliopathies. This homozygous missense change is found in a region of homozygosity on Chromosome 7 (Extended data Figure 2) and is predicted to cause loss of splice donor site. Mutations in BBS9 are known to cause BBS (Extended data Table 6), and the clinical phenotype of patient N36, which included features of BBS including post-axial polydactyly affecting all limbs and cystic kidney disease is consistent with a BBS ciliopathy.

Discussion

In paediatric populations, CKD is a major contributor to healthcare burden leading to severe morbidity and mortality. At least 17% of those with ESKD are considered as CKD with unknown aetiology, where the primary kidney disease is not clear. In addition, the primary clinical diagnosis of CKD patients is often inaccurate. Thus, in the developing era of precision medicine, WES is used as an essential tool that provides novel diagnostic perspectives for the detection of the causes of CKD. Knowledge of genetic causes has valuable clinical implications in therapeutic intervention, improving prognosis, guide family counselling or managing settings of kidney transplantation. Despite being rare, inherited kidney diseases represent one of the most common causes of CKD and ESKD, accounting for up to 10% of adults and almost all children commencing renal replacement therapy. The possibility of monogenic causes in those with unknown aetiology of CKD or with atypical clinical presentation is assumed to be high.
<table>
<thead>
<tr>
<th>Family - individual</th>
<th>Gene name</th>
<th>Nucleotide change</th>
<th>Amino acid change</th>
<th>Zygosity</th>
<th>Amino acid conser.</th>
<th>ACMG Classification</th>
<th>dbSNP ID</th>
<th>MAF</th>
<th>CADD score</th>
<th>SIFT Pred</th>
<th>PolyPhen-2 Pred</th>
<th>MutationTaster</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>M46</td>
<td>TMEM231</td>
<td>c.710A>G</td>
<td>p.Y237C</td>
<td>Hom</td>
<td>C. elegans</td>
<td>Uncertain significance</td>
<td>NA</td>
<td></td>
<td></td>
<td>22.7</td>
<td>Possibly Damaging</td>
<td>Disease causing</td>
<td>N/A</td>
</tr>
<tr>
<td>M48</td>
<td>TMEM138</td>
<td>c.389A>G</td>
<td>p.Y130C</td>
<td>Hom</td>
<td>D. rerio</td>
<td>Likely pathogenic</td>
<td>rs387907135</td>
<td>3.98×10^-6</td>
<td>25.7</td>
<td>Deleterious</td>
<td>Probably damaging</td>
<td>Disease causing</td>
<td>Lee et al. (2012)'</td>
</tr>
<tr>
<td>N36</td>
<td>BBS9</td>
<td>c.1789+1G>A</td>
<td>Splice donor site loss</td>
<td>Hom</td>
<td>N/A</td>
<td>Pathogenic</td>
<td>rs201938124</td>
<td>7.96×10^-6</td>
<td>25</td>
<td>N/A</td>
<td>N/A</td>
<td>Disease causing</td>
<td>Nishimura et al. (2005)¹³</td>
</tr>
</tbody>
</table>

Reference sequence IDs: TMEM231: NM_0010777416; TMEM138: NM_016464; WDR19: NM_025132; BBS9: NM_198428

Abbreviations: CADD score, combined annotation dependant depletion; conser, conservation; gnomAD, Genome Aggregation Database; Hom, homozygous; N/A, not available
At least 500 different genetic causes have been associated with childhood CKD.

In this pilot study, we examined the utility of WES in the diagnosis of 8 different Omani children with childhood onset CKD related to cystic kidney disease and a suspected inherited renal ciliopathy. A conclusive genetic diagnosis was achieved in half of the cases. Positive WES findings allow a precise molecular diagnosis and targeted clinical management as well as informing family planning and facilitating proper genetic counselling. In four of the children (M46, M48, P18 and N36) the molecular genetic findings confirmed the suspected clinical diagnosis. The identification of a molecular genetic diagnosis in all these families can provide accurate genetic advice about the parent’s reproductive choices and the possibility of preimplantation genetic diagnosis (PGD) or early genetic testing of a foetus in future pregnancies.

A wide range of genetic studies have been performed in childhood CKD populations and different diagnostic yields were achieved due to differences in the inclusion criteria or patients and the study design. In a study of families with inherited kidney disease, Mallett, et al. reported a diagnostic yield of 46%, reflecting the significant ability of WES in underlying the potential genetic causes of most renal phenotypes. In another recent study, Groopman et al. reported higher diagnostic yield in patients with congenital and cystic kidney disease (23.9%). Furthermore, regardless of the primary kidney diagnosis, higher diagnostic yield was associated with a positive family history of CKD, history of parental consanguinity and presentations of extra-renal features. Thus using a combination of homozygosity mapping along with WES genotype data is always recommended as a powerful approach for consanguineous families to identify rare genetic causes.

Although WES provides massive amounts of genetic data, 4 patients remained unsolved in this study. Interpretation of many novel and extremely rare variants is still limited by the incomplete knowledge of the total human protein-coding genes as well as the incorrect annotation of variants pathogenicity and incorrect association of genes with the disease in the literature. At present, up to 70% of protein-coding genes have no recognized human disease phenotype. False gene-disease associations are present in the literature and clinically valuable databases of variants pathogenicity, such as Human Gene Mutation Database (HGMD), comprise various errors causing benign variants being falsely selected out of the data and allocated as plausible diagnosis. This situation is predicted to improve as further genomes are sequenced, including large data collections containing populations of both healthy individuals and patients with rare diseases. In addition, studying more families with similar clinical phenotypes from the same population may facilitate linking novel undiscovered genes to the disease phenotype in those unsolved patients.

In this study, WES confirmed the clinical diagnosis in 4 children. In a similar study of large consanguineous or familial cohort (n = 79) of children clinically diagnosed with NPHP, genetic diagnostic yield of 63% was reported, of which the clinical diagnosis was confirmed in 64% and changed to different molecular diagnosis in the remaining 36%.

Figure 2. Distribution of mutations in TMEM231, TMEM138, WDR19 and BBS9. Positions and predicted protein alterations are shown for A. TMEM231 B. TMEM138 C. WDR19 D. BBS9. Exon structure is marked by a dashed line. Protein domains are shown in colored bars. Known mutations are shown above the gene/protein structure with the number showing frequency (if >1) of probands reported for each mutation. Mutations identified in this study are shown below the gene/protein structure.
This study has some limitations, including small sample size that does not give a generalized image of broader childhood renal ciliopathy in the population from Oman. However, an enhanced assessment of the utility of WES in the clinical diagnostic practice of these disorders may be given through systematic WES analysis of a larger, unselected cohort. Moreover, the diagnostic gap in this study may be caused by the common technical limitation of WES, including the missed detection of structural variant breakpoints, sequencing difficulties for regions with repetitive elements or guanine-cytosine (GC)-rich regions, and limited discrimination between highly homologous genomic regions with pseudogenes. These limitations are attributed to the short-read lengths that are utilized to generate high genomic coverage and depth. These limitations are assumed to be resolved through using long-read sequencing platforms that compromise these technical challenges and improve the detection of genetic variants. Thus, the emerging future of long-read sequencing based whole genome sequencing (WGS) could enhance the diagnostic yield of patients with inherited renal ciliopathies and provide more conclusive primary kidney disease diagnosis. This can be supported by recent reports of WGS obtaining higher molecular diagnostic yield compared with WES, where 20–40% of those unsolved by WES were genetically conclusive by WGS.

Recent advancements in medical genetics through the use of massively parallel sequencing have not only advanced the discovery of novel causative variants, genes and phenotypes, but also contributed to the re-classification of diseases and phenotypes into novel gene-based ontologies. However, all types of next generation sequencing (NGS)-based testing (Target panel, WES and WGS) have some shared limitations, including the inability to obtain enough coverage of genomic regions with highly repetitive GC-content sequence, such as that in MUC1 gene. In his study of six unrelated families with medullary cystic kidney disease type 1 (MCKD1), Kirby et al. highlighted the challenges of these technologies in detecting the causative monogenic causes of some Mendelian disorders, such as MCKD1, where only long-range polymerase chain reaction and molecular cloning successfully performed the task. Moreover, in many patients with acquired diseases, NGS testing is of limited importance and transformation of genetic results into clinical setup may be challenging. In the field of kidney disease, the majority of genetic testing studies are narrowed to a research setting, thus until now the knowledge of its diagnostic efficacy in clinical practice is still limited. In addition, managing the medical ethics raised by these technologies, including uncertain variants and incidental findings, and balancing the social concerns is still challenging.

Conclusion
WES of patients with different inherited cystic kidney diseases and renal ciliopathies shows promise as a diagnostic tool, especially in well selected patients with a high coefficient of inbreeding and/or with a syndromic presentation. It has the potential to resolve those cases with clear suspicion of renal ciliopathies, as well as those with uncertain aetiology causing CKD. The fact that ~50% of patients remain without genetic diagnosis after WES highlights the need for improved sequencing techniques and interpretation tools, driven by constantly evolving knowledge regarding the genetic architecture of diseases. The clinical impacts of positive WES results on therapeutic choice, genetic counselling and guidance of kidney transplant are critical. Indeed, professional genetic counselling on the prospective effects of a positive test result is crucial, bearing also in mind the possibility of incidental findings. Although further studies from the Omani population are required, we predict an expanding impact of NGS-based diagnosis, both gene panels and WES in clinical practice in the very near future.

Data availability
Underlying data
This project contains the following underlying data:
- M46.snp.vcf
- M46.indels.vcf
- M48.snp.vcf
- M48.indels.vcf
- JAS_P18.GATK.snp.vcf
- JAS_P18.GATK.indel.vcf
- JAS_N36.GATK.snp.vcf
- JAS_N36.GATK.indel.vcf

Extended data
This project contains the following extended data:
- Extended data Table 1. Forward and reverse primer sequences used for WES variants verification (https://doi.org/10.6084/m9.figshare.13675201)
- Extended data Table 2. Whole exome sequence alignment and coverage profile by sample (https://doi.org/10.6084/m9.figshare.13675222)
- Extended Data Table 3. TMEM231 alleles (https://doi.org/10.6084/m9.figshare.13675471)
- Extended data Table 4. TMEM138 alleles (https://doi.org/10.6084/m9.figshare.13675504.v1)
- Extended data Table 5. WDR19 alleles (https://doi.org/10.6084/m9.figshare.13675540)
- Extended data Table 6. BBS9 alleles (https://doi.org/10.6084/m9.figshare.13675546)
- Extended data Figure 1. Pedigree diagrams (https://doi.org/10.6084/m9.figshare.13675552.v1)
- Extended data Figure 2. Homozygosity mapping (https://doi.org/10.6084/m9.figshare.13675558.v1)
• Extended data Figure 3. Clustal alignments of amino acids associated with identified missense mutations (https://doi.org/10.6084/m9.figshare.13675561.v1)

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements

The authors thank the staff at the National Genetic Centre, Muscat, Oman, and the cooperative nephrologists and nurses from different referral hospitals throughout Oman for their kind collaboration.

References

Paraskevi Goggolidou

Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK

This manuscript by Al Alawi et al. provides an interesting application of Whole Exome Sequencing (WES) in Ciliopathy patients in Jordan. The authors have looked at a small number of Ciliopathy patients and identified mutations of interest in 50% of them. As they are working with rare disease patients, the limitations in sequencing bigger patient populations are understandable. Furthermore, this work provides a very useful proof of concept in the application of WES for genetic diagnosis of rare diseases, such as Ciliopathies.

However, as discussed in the discussion section, WES has got limitations and other approaches such as WGS might have been more insightful for this study. The manuscript would thus benefit from a more thorough discussion of the possibility of identified by WGS cases of non-exonic mutations causing Ciliopathies and a comment on the mechanisms behind this. Furthermore, it is important to comment on whether there were any single heterozygous pathogenic variants identified in known genes and if they checked for genes within stretches of homozygosity in consanguineous families. Finally, for the non-specialist audience a brief description of the key characteristics and genes associated with renal ciliopathies in the introduction section would have been useful.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Renal Ciliopathies

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 30 March 2021

https://doi.org/10.5256/f1000research.43403.r81405

© 2021 Valente E. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Enza Maria Valente
1 Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
2 Department of Molecular Medicine, University of Pavia, Pavia, Italy

In this short article, the authors show the importance of Whole Exome Sequencing (WES) approach as a first genetic screening for patients with renal ciliopathy syndromes. They focus on a small cohort of 8 consanguineous Omani probands, who underwent WES. The diagnostic yield was 50%: four out of 8 probands were found to carry homozygous pathogenic variants in known genes. The study was carried out in a proper way, with sound methodology. The identified variants were adequately named and classified following ACMG guidelines. The discussion correctly addresses limitations of WES.

There are two main limitations in this article. The first is the very small cohort size, which does not really allow making a correct estimate of the diagnostic yield of WES in renal ciliopathies. Expansion of the study to a larger group of patients would clearly provide more useful information, also regarding the genetic background of genetic renal ciliopathies in Oman. Second, even maintaining this cohort, it would be very interesting to know more about “negative” cases: where there any single heterozygous pathogenic variants in known genes? Any missense variants classified as VUS? Moreover, since families were consanguineous, the authors should report whether they checked for genes included within stretches of homozygosity by descent, and list the potentially interesting homozygous variants in candidate genes lying within these regions. This would definitely improve the study which, in its present form, does not add substantial new data
to current knowledge on the topic, and therefore it remains largely confirmatory.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: neurogenetics, ciliopathies

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com