RESEARCH ARTICLE

Using Akaike's information theoretic criterion in mixed-effects modeling of pharmacokinetic data: a simulation study

[version 2; peer review: 1 approved, 1 approved with reservations, 1 not approved]

Previously titled: Using Akaike's information theoretic criterion in population analysis: a simulation study

Erik Olofsen, Albert Dahan

Department of Anesthesiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands

Abstract

Akaike's information theoretic criterion for model discrimination (AIC) is often stated to "overfit", i.e., it selects models with a higher dimension than the dimension of the model that generated the data. However, with experimental pharmacokinetic data it may not be possible to identify the correct model, because of the complexity of the processes governing drug disposition. Instead of trying to find the correct model, a more useful objective might be to minimize the prediction error of drug concentrations in subjects with unknown disposition characteristics. In that case, the AIC might be the selection criterion of choice.

We performed Monte Carlo simulations using a model of pharmacokinetic data (a power function of time) with the property that fits with common multi-exponential models can never be perfect - thus resembling the situation with real data. Prespecified models were fitted to simulated data sets, and AIC and AICc (the criterion with a correction for small sample sizes) values were calculated and averaged. The average predictive performances of the models, quantified using simulated validation sets, were compared to the means of the AICs. The data for fits and validation consisted of 11 concentration measurements each obtained in 5 individuals, with three degrees of interindividual variability in the pharmacokinetic volume of distribution.

Mean AICc corresponded very well, and better than mean AIC, with mean predictive performance. With increasing interindividual variability, there was a trend towards larger optimal models, but with respect to both lowest AICc and best predictive performance.

Open Peer Review

Approval Status

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>version 3</td>
<td>✔</td>
<td>✔</td>
<td>?</td>
</tr>
<tr>
<td>(revision) 27 Jul 2015 view</td>
<td>view</td>
<td></td>
<td>view</td>
</tr>
<tr>
<td>version 2</td>
<td>✔</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(revision) 28 May 2014 view</td>
<td>view</td>
<td>view</td>
<td>view</td>
</tr>
<tr>
<td>version 1</td>
<td>?</td>
<td>✗</td>
<td>?</td>
</tr>
<tr>
<td>04 Mar 2013 view</td>
<td>view</td>
<td>view</td>
<td>view</td>
</tr>
</tbody>
</table>

1. Paul Eilers, Erasmus Medical Center, Rotterdam, The Netherlands
2. Frank Harrell, Vanderbilt University School of Medicine, Nashville, TN, USA
3. Julie Bertrand, University College London, London, UK

Any reports and responses or comments on the article can be found at the end of the article.
Furthermore, it was observed that the mean square prediction error itself became less suitable as a validation criterion, and that a predictive performance measure should incorporate interindividual variability. This simulation study showed that, at least in a relatively simple mixed effects modelling context with a set of prespecified models, minimal mean AIC$_c$ corresponded to best predictive performance even in the presence of relatively large interindividual variability.

Keywords
population model, pharmacokinetics, Akaike, information theoretic criterion
Introduction

We first define population data as a set of one or more measurements in two or more individuals (e.g., patients, volunteers, or animals). Such data may be characterized by mixed-effects models, where the mixed effects consist of fixed and random effects. Fixed effects are, for example, the times at which the measurements are obtained, and covariates such as demographic characteristics of the individuals. When mixed-effects models are fitted to population data, the question arises as to how many of those effects should be incorporated in the model. This is the so-called problem of variable selection.

One strategy is to observe the change in goodness-of-fit by adding one more parameter and testing the significance of that change. In the maximum likelihood approach, the objective function value (OFV), being the minus two logarithm of the likelihood function, is minimized. To attain a (OFV), being the minus two logarithm of the likelihood function, is minimized. To attain a minimum AIC is related to minimum mean prediction error, where the mean is taken across multiple studies and prespecified models; this should be borne in mind when analyzing a data set from just one study.

Another strategy is to apply Akaike’s information theoretic criterion (AIC), which can be written as

$$\text{AIC} = \text{OFV} + 2 \cdot D, \quad (1)$$

where D is the number of parameters in the model. The model with the lowest value of AIC is considered the best one. In the case of just adding one parameter, the OFV needs to decrease only 2 points or more to be incorporated in the model, so the associated p-value > 0.05 seems too high to justify this strategy.

When additional model parameters are incorporated, the significance of one model parameter might change, but the interpretation of AIC does not. However, when multiple significance tests are performed, the significance level of each individual test should be corrected to a lower value, so a decrease of 2 points for one parameter does again seem to be too low.

Even if the strategy of using AIC leads to optimal variable selection, the question arises as to whether this is also the case when using mixed-effects models. In theory, the model that is best according to AIC is the one that minimizes prediction error; and this is also true for a mixed effects model when predicting data for individuals for which no data have been obtained so far.

In the literature, many simulation studies have assessed the performance of AIC, but to our knowledge these were never done in selecting the model with minimal prediction error for population data. In this article, we will define a toy pharmacokinetic model and observe the performance of AIC when adding fixed effects to this model, as well as when adding interindividual variability.

Methods

A hypothetical pharmacokinetic model

Consider the following function $y(t)$, an infinite sum of exponentials, and its relationship with a (negative) power of time:

$$y(t) = \int_{0}^{\infty} \exp(-\lambda t) \, d\lambda = -\frac{1}{t} \cdot \exp(-\lambda)\bigg|_{0}^{\infty} = \frac{1}{t} \quad \text{for } t > 0. \quad (2)$$

Figure 1A shows that this function looks like a typical pharmacokinetic profile after bolus administration. This model is to be regarded as a toy model, because we do not expect it to adequately describe pharmacokinetic data, although variations of power functions of

![Figure 1. A: function $y(t) = 1/t$, and B: approximations obtained by fitting six and three exponentials to the depicted eleven samples. Note the log-lin and log-log scales for panels A and B, respectively. Time has arbitrary units.](image)
time have been shown to fit pharmacokinetic data well. We approximate \(y(t) = 1/t \) by the following sum of \(M \) exponentials with \(K \) nonzero coefficients \(\alpha \):

\[
y(t; \alpha, \lambda) = \sum_{m=1}^{M} \alpha_m \exp(-\lambda_m t).
\]

The \(M \) parameters \(\lambda \) are fixed and set as described in the next subsections. This approximation has the property that with while the fit improves with increasing \(K \), we would need no less than \(K = M \) exponentials to obtain a perfect fit (with \(M \) time instants \(t \)). Moreover, with noisy data, it might be that for \(K < M \) an optimal fit is obtained in the sense that then the associated prediction error of the model is minimal. Figure 1B shows how eleven (in this case error-free) samples from this function can be approximated by sums of exponentials.

Individual data modeling and simulation
In the following, the time instants \(t_j, j = 1, \ldots, M \), centered around 1, were chosen within \([1/\text{t}_{\text{max}}, \text{t}_{\text{max}}]\) according to

\[
t_j = \left(\frac{M - j}{M + j} \right) \gamma,
\]

with \(\gamma = \log(t_{\text{max}})/\log(M); \text{t}_{\text{max}} \) was set to 100 (see the time axis of Figure 1B for an example with \(M = 11 \)). Simulated data with constant proportional error were generated via

\[
y(t_j) = \frac{1}{t_j}(1 + \epsilon_j),
\]

where \(\epsilon_j \) denotes Gaussian measurement noise with variance \(\sigma^2 \). The \(M \) time constants \(\lambda \) were fixed according to \(\lambda_m = 1/t_m, m = 1, \ldots, M \). In this setting the model equation (3) can be fitted to simulated data using weighted linear least squares regression, with weight factors \(w(t_j) = 1/t_j \) (note that no precaution is needed against \(\epsilon \leq -1 \)). Linear least squares regression is very fast and robust, so it allows for the evaluation of many simulation scenarios.

Statistical analysis
Simulation data were generated via equation (6), with random generators in \(R \). Model fitting was also done in \(R \), with function “lm()” from package “stats”, except for nonlinear mixed-effects model fitting for simulated data with \(\sigma^2 > 0 \), which was done in NONMEM version 7.3.0. Parameters \(\alpha \) (see equation (7)) were not constrained to be positive, so that it was not possible for parameters to become essentially fixed to zero, reducing the dimensionality of the model.

Prediction error \(\nu^2 \) was calculated with

\[
\nu^2 = \frac{1}{N \cdot M} \sum_{i=1}^{N} \sum_{j=1}^{M} \left(\frac{z_i(t_j) - \hat{y}_i(t_j)}{w(t_j)} \right)^2,
\]

using predictions based on equation (7) with the random effects \(\eta_i = 0 \), and validation data \(z_i(t) \) also generated via equation (6), but with different realizations of \(\epsilon_i \) and \(\eta_i \). Error terms weighted with \(w(t_j) = 1/t_j \) are homoscedastic, which is an assumption underlying regression analysis and allows for the interpretation of \(\nu^2 \) as independent of time. The objective function OFV was also calculated at the estimated parameters using the validation data, denoted OFV, which should on average be approximately equal to Akaike’s criterion (see Supplementary material). OFV, was compared with AIC and also with Akaike’s criterion with a correction for small sample sizes (AIC\(_C\)):

\[
\text{AIC}_c = \text{OFV} + 2 \cdot D \cdot \left(1 + \frac{D + 1}{N \cdot M - D - 1} \right)
\]

The above criteria were normalized by dividing them by the number of observations, and averaged over 1000 runs (unless otherwise stated; and runs where NONMEM’s minimization was not successful were excluded). For plotting purposes, 95\% confidence intervals or confidence regions for means were determined using R’s packages “gplots” and “car”, under the assumption that averages over 1000 variables are normally distributed. Model selection frequencies were calculated based on optimal models according to AIC\(_C\), as determined for each simulation data set.

Selection of parameter values
Simulation parameters \(M \) and \(\sigma^2 \) are expected to determine the number of exponentials \(K \); if the number of measurements \(M \) increases and/or the measurement error \(\sigma^2 \) decreases, \(K \) will increase. Without interindividual variance, so \(\sigma^2 = 0 \), the information in the data increases as \(N \) increases, so also in that case \(K \) is expected to increase. With \(N = 2, M = 11 \) and \(\sigma^2 = 0.5 \), pilot simulations indicated a \(K \approx 4 \). When \(\sigma^2 > 0 \), prediction error will increase, but it is less easy to predict what its effect will be on \(K \). For \(\sigma^2 \) values of 0, 0.1, and 0.5 were selected - values that are encountered in practice.
Because there is only one random effect in the mixed effects model, the relatively low number of individuals \(N = 5 \) was selected.

For a certain choice of \(M \), there are \(2^M - 1 \) possible combinations of \(\lambda s \) to choose for the terms \(\exp(-\lambda mt) \) in the sum of exponentials (excluding the case of a model without exponentials). Because accurate evaluation of all models at different parameter values is not feasible with respect to computer time, the set of possible combinations was reduced to one with evenly spaced \(\lambda s \). Table 1 gives an example for the case \(M = 11 \).

Results

Figure 2 shows the averaged prediction error versus number of exponentials for all possible choices of \(\lambda \), with \(N = 2, M = 11, \sigma^2 = 0.5 \), and \(\omega^2 = 0 \). From the figure it is clear that prediction error may indeed increase if the number of exponentials selected is too large. The bigger solid circles correspond to the models chosen in Table 1; in general the evenly spaced selection of exponents resulted in models with smallest prediction error.

Figure 3 shows simulation results using the model set defined in Table 1, starting from \(K = 4 \), with parameters \(N = 5, M = 11, \sigma^2 = 0.5 \), and \(\omega^2 = 0 \). The model with \(K = 6 \) exponentials had minimal mean AIC\(_C\), and also minimal mean OFV, and minimal prediction error \(\nu^2 \). With \(N = 5, M = 11 \), there are still visible differences between AIC\(_C\) and AIC; although AIC would in this case also select the optimal model, AIC appears to favor more complex models. Note that the sizes of the confidence intervals and confidence regions can be made arbitrarily small by choosing the number of runs to be higher than the selected number of 1000 (at the expense of computer time).

Figure 4 shows simulation results with \(\omega^2 = 0.1 \); mixed-effects analysis was used to fit the population data. The main difference with the results of data with \(\omega^2 = 0 \) is the overall increase in OFV\(_v\) and AIC\(_v\). The optimal number of exponentials remained \(K = 6 \).

Table 1. Selecting \(K = 1, \ldots, M = 11 \) evenly spaced rate constants from \(\lambda \): 0 and 1 denote \(\alpha_m \) to be fixed to zero, and a free parameter to be estimated, respectively (see equation (7)).

<table>
<thead>
<tr>
<th>(K) m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 2. Mean squared prediction error \(\nu^2 \) (equation (8)) as a function of the number of exponentials, with 2047 models, averaged over 100 runs, \(N = 2, M = 11, \sigma^2 = 0.5, \omega^2 = 0 \). The dashed line represents the prediction error from the true model, so that \(\nu^2 = \sigma^2 \). The bigger solid circles correspond to the models chosen in Table 1.
Figure 3. Mean OFV, as a function minus of two log likelihood (-2LL), the number of exponentials, AIC and AICc (top four panels), and AIC, AICc, prediction error ν^2, and model selection frequencies as a function of the number of exponentials (lower four panels), averaged over 1000 runs, $N = 5$, $M = 11$, $\sigma^2 = 0.5$, $\omega^2 = 0$. The dashed lines represent the theoretical values for an infinite amount of data (see Supplementary material). Error bars and ellipses denote 95% confidence intervals and confidence regions, respectively. The solid lines in the middle upper panels are lines of identity.

Figure 4. Mean OFV, AICc, prediction error ν^2, and model selection frequencies as a function of the number of exponentials, for $\omega^2 = 0.1$; parameters otherwise identical.
Figure 5 shows simulation results with ω^2 set at the higher value of 0.5. The main differences with the results of data with $\omega^2 = 0.1$ are again the overall increase in OFV, AIC, and prediction error, and also in the variability in the prediction error. The optimal number of exponentials remained $K = 6$, although AIC begins to favor the models with larger K (a simulation with N increased to 7, both OFV, and AIC favored larger models; data not shown).

Discussion
With the objective of creating a simulation context resembling pharmacokinetic analysis where concentration data are approximated by a sum of exponentials, the toy model $y(t) = 1/t$ was chosen. In this setting, reality - the reality of the toy model - is always underfitted. When mixed effects models were fitted to simulated data, mean AIC was approximately equal to the validation criterion mean OFV, and their minima coincided. With large interindividual variability, mean expected prediction error (ν^2, see equation (8), with random effects fixed to zero), was less discriminative between models, so that it becomes less suitable as a validation criterion; it does not take into account whether estimated interindividual variability matches the variability in the validation data.

Akaike's versus the conditional Akaike information criterion
Vaida and Blanchard proposed a conditional Akaike information criterion to be used in model selection for the “cluster focus”. It is important to stress that their definition of cluster focus is the situation where data are to be predicted of a cluster that was also used to build the predictive model. In that case, the random effects have been estimated, and then the question arises how many parameters that required. In our situation, a cluster is the data from an individual; AIC was used in the situation of predicting population data consisting of individual data that were not used to build the model. This would seem to be the most common situation in clinical practice. Furthermore, AIC for the population focus is asymptotically equivalent with leave-one-individual-out cross-validation; AIC for the individual focus with leave-one-observation-out cross-validation.

Akaike’s versus the Bayesian information criterion
We chose to perform simulations using the model given by equation (2) because approximating data with a sum of exponentials is daily practice in pharmacokinetic analysis where data are obtained from “infinitely complex” systems, and we cannot hope to find the “correct” model. The Bayesian information criterion (BIC) is consistent in the sense that it selects the correct model, given an infinite amount of data. The reason that AIC can be used in “real-life” problems is that as the amount of data goes to infinity, the complexity, or dimension, of the model that should be applied should also go infinity. Burnham and Anderson show that it is possible to choose the prior for BIC in such a way that it incorporates the knowledge that more complex models should be favored if the amount of data increases, and so that the BIC “reduces” to AIC. In the situation that the correct model set belongs to the set of evaluated models, a selection criterion that both finds the correct model and minimizes prediction error would be preferable - but Yang concluded that this may not be possible. As the correct model is most likely not included in the set chosen by the modeler, using AIC - or optimizing predictive performance - seems preferable. The expression of the BIC contains a factor $\log(N')$ instead of 2 with AIC, where N' is the effective sample size. N' depends on the association between parameters and random effects, and is for our model definition of the order $N' = (D - 2) \cdot N \cdot M + 2 \cdot N$. This indicates that if $N' \approx 7.4$, a model with minimum BIC has worse predictive properties than a model with minimum AIC.

Model selection criterion AIC and predictive performance
Intuitively, predicting data for an individual that cannot be “individualized” seems problematic; because the data are predicted using a random effect η_i set to zero, instead of the value fitting for that individual. However, AIC is related to the expected model output; and for individual data not used in building the predictive model, the expected model is output is obtained with mixed effects set to zero, instead of the value fitting for that

Figure 5. Mean OFV, AIC, prediction error ν^2, and model selection frequencies as a function of the number of exponentials, for $\omega^2 = 0.5$; parameters otherwise identical.
Furthermore, it should be noted that minimizing AIC has a more general interpretation, namely optimally capturing the information contained in the data. Independent or future population data z are not just predicted by \hat{y}; also the distributions of the expected random effects ϵ and η are characterized by $\hat{\sigma}^2$ and $\hat{\sigma}^2$. That is why OFV, (and not ν^2) is the criterion to be used to assess the predictive performance of a model.

In pharmacokinetic analysis, it may not really be the most appropriate test (using a hypothesis test assuming a X^2 distribution for the objective function) of whether an added exponential is statistically significant. Here the hypothesis H_i: the data originate from a K-exponential model (and H_j: the data originate from a higher dimensional model) is almost certain to be false. Furthermore, when taking a low p-value, it is also almost certain that the model selected has worse predictive properties. If a model is to be applied in clinical practice, for example for drug administration in a patient never studied before, the model should be as predictive as possible. However, it may be sensible to test whether a certain fixed effect has both a clinically and statistically significant effect, if it is costly to reach a false conclusion, for example in case of increased risks for patients, or in the field of drug development.

Regression weights as functions of the model output

The simulated data were analyzed using weighted (non)linear regression, see equation (6), where measurement noise was weighted according to the exact function value. In practice, when the weights are unknown, a choice must be made to weight the data according to the measurements or to the model output, depending on which is likely to be the most accurate. To match the latter case, simulated data should be generated (cf. equation (6)) via

$$y_i(t_j) = \frac{1}{t_j} \cdot \exp(\eta_i) \cdot (1 + \varepsilon_{ij}).$$

(10)

The likelihood function and AIC are both still well-defined if the model output $\hat{y}(t) \neq 0$. Prediction errors are to be calculated with

$$\nu^2 = \frac{1}{N \cdot M} \sum_{i=1}^{N} \sum_{j=1}^{M} \left(\frac{z_i(t_j) - \hat{y}_i(t_j)}{\hat{y}_i(t_j)} \right)^2,$$

(11)

where \hat{y} possibly becomes arbitrarily close to zero for less than optimal models, and ν^2 may be based on long-tailed distributed numbers. To be able to compare prediction errors from different models, the weight factors could be chosen identical for all K to the model output of the largest model - see the Supplementary material for further analysis.

Model selection uncertainty

Theoretically, and in the discussed simulations, minimum mean AIC is related to best mean predictive performance, where the mean is taken across multiple studies and prespecified models. This holds independent of the number of models. However, in practice, we have data from one study and the task of specifying the models to consider. As soon as there is more than one model, there is a nonzero probability that the model selected based on AIC would have, on average, a larger prediction error than the optimal one. Also if we were able to repeat the study, the average prediction error based on the models with minimum AIC would be larger than optimal. With many models, model selection is called unstable in the sense that each time a study is repeated it would lead to the selection of another model.

Models with equal mean predictive properties may have different properties in different extrapolation scenarios. Model averaging, where model parameters or their predictions are averaged, reduces model selection instability and hence may be used to avoid model specific inference which discards model selection uncertainty. Data dredging refers to the situation where there is an increasingly large set of models which are not prespecified. At the point the data dredging is stopped (by the investigator, or by the computer), the best model is at high risk to fit only the data at hand, and hence cannot be used for prediction.

Limitations of the study

We recognize the following limitations of our study:

- The simulation model contained only one random effect to describe interindividual variability, and therefore the number of random effect (co)variances was fixed to one in the model set used for fitting. While the number of (co)variance parameters should be counted as ordinary parameters, at least in well behaved situations, we did not investigate the process of optimizing this part of a random effects model.

- The nonlinearity in the mixed-effects model was simply due to a multiplicative factor $\exp(\eta)$ in the model output. Usually, random effects in pharmacokinetic models have more complex influence on the model output. However, the lognormal nature of $\exp(\eta)$ is a characteristic property of both our toy model and general pharmacokinetic models.

- The characteristics of the exponentials incorporated in the regression models were evenly spaced, and the values of the rate constants λ were fixed. We expect that with more freedom in the specification of the set of models, prediction errors with overfitted models may be worse. However, the agreement between AIC, and prediction error should persist.

- We did not evaluate all possible models within their definition, but only those listed in Table 1, and it makes sense to limit the model set to reduce model selection instability. We did not address how to optimally select the rate constants λ.

The figure panels with the model selection frequencies (in Figure 3, Figure 4, and Figure 5) show: 1) there is relationship between the model with highest selection probability and minimum mean prediction error, but this relationship is not one-to-one; 2) there can be an almost as large selection probability for a model that is not associated with minimum mean prediction error; but 3) in that case, their minimum mean prediction errors are comparable.
Stepwise selection methods have their disadvantages\(^\text{15}\). With stepwise forward selection, AIC\(_c\) may even perform worse than AIC\(^\text{16}\).

- We did not evaluate the process of covariate selection. However, the set of exponentials may be viewed as a number of (somewhat correlated) predictors. It is therefore expected that the present findings also hold for other types of covariates.

Conclusion
In conclusion, the present simulation study demonstrated that, at least in a relatively simple mixed effects modeling context with a set of prespecified models, minimum mean AIC, coincided with best predictive performance, also in the presence of interindividual variability.

Software availability
figshare: Simulation scripts: update 1, doi: 10.6084/m9.figshare.1036483\(^\text{17}\)

Supplementary material
In the following, we summarize theory on the maximum likelihood approach and AIC relevant for this paper. We start with the situation for data from one individual and show how AIC is related to OFV. Subsequently we discuss the situation for population data.

Suppose the model for measured data \(y_j, j = 1, \ldots, M\) is given by (cf. equation (5), equation (6), and equation (10))

\[
y_j = \hat{y}_j + w_j \cdot \epsilon_j,
\]

where \(\hat{y}_j\) is the model output, \(w_j\) are weight factors, and \(\epsilon_j\) are independent normally distributed with mean zero and variance \(\sigma^2\). The likelihood function \(L\) for this data set is then given by

\[
L(y; \theta) = \prod_{j=1}^{M} \frac{1}{w_j \sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{y_j - \hat{y}_j}{w_j \sigma} \right)^2 \right],
\]

where the set of parameters \(\theta\) contains \(\sigma^2\) and those needed to calculate \(\hat{y}\). The objective function value (OFV) is defined as minus two times the natural logarithm of the likelihood:

\[
\text{OFV} = -2 \log(L(y; \theta)) = \sum_{j=1}^{M} \log(w_j^2) + M \log(\sigma^2)
+ M \log(2\pi) + \frac{1}{\sigma^2} \sum_{j=1}^{M} \left(\frac{y_j - \hat{y}_j}{w_j} \right)^2.
\]

By substituting this estimate in equation (14), we obtain

\[
\text{OFV} = \sum_{j=1}^{M} \log(w_j^2) + M \log(\hat{\sigma}^2) + M \log(2\pi) + M + 2D.
\]

The term \(2D\) arises from the fact that in minimizing the Kullback-Leibler information, i.e., a measure of the distance between reality and the best approximating model, expectations have to be taken over a data space leading to estimates of parameters \(\theta\) (and hence \(\hat{y}\), and possibly \(w\) (see below)) and over a second independent data space \(y'\). So AIC as defined above should on average be approximately equal the value of OFV (equation 14), with estimated values for the parameters and validation data \(z\), denoted OFV:\(_v\):

Author contributions
EO performed the numerical analyses, and EO and AD contributed to the interpretation of the results and the preparation of the manuscript; both authors have agreed to its final content.

Competing interests
No competing interests were disclosed.

Grant information
This work was funded by institutional resources.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments
The authors would like to thank J. de Goede for many fruitful discussions.

\[\text{AIC} = \sum_{j=1}^{M} \log(w_j^2) + M \log(\hat{\sigma}^2) + M \log(2\pi) + M + 2D.\]
\[
\text{OFV}_v = \sum_{j=1}^{M} \log(w_j^2) + M \log(\hat{\sigma}^2) + M \log(2\pi) + \frac{1}{\sigma^2} \sum_{j=1}^{M} \left(\frac{\hat{y}_j - y_j}{w_j} \right)^2.
\] (19)

So when OFV and AIC are both minimized, the latter term - the sum of squared weighted prediction errors - should also be minimal. For the plots in this paper, the measures OFV, OFV, AIC, and AIC, were normalized by dividing them by the number of data samples. With an infinite amount of data, and \(\hat{\sigma}^2 = \sigma^2 \), the normalized criteria should attain the value of \(\log(\sigma^2) + \log(2\pi) + 1 \).

Note that if the weights \(w \) are taken as in subsection “Data simulation”, the term \(\Sigma \log(w_j^2) \) vanishes (this is a just a curiosity of that choice of weights); if the \(w \) are taken as the measurements \(y_j \), the expectation of this term is the same for every \(K \) (for every model considered here). However, if the weights are taken as the model output \(\hat{y}_j \), the expectation of the term will not vanish for a less than perfect model, and will differ between different models. To compare their \(\nu \), the weights for all models could be fixed to the model output of the best model - but since that is unknown at this point - to the output of the largest model.

For population data, the likelihood function is the product across individual marginal likelihoods where the random effects \(\eta \) contained in equation (13), when \(\hat{y} \) is given by equation (6), have been integrated out. Usually, these integrals need to be numerically approximated, e.g., by NONMEM. So the context of AIC is then also the one where the \(\eta \)s have been integrated out (but with the parameters at their estimated values), which is to be done when all data are acquired. So while the characteristics of the set of (validation) data are optimally captured, this context is different from the case where prediction errors are calculated with the random effects set to zero instead of integrated out. In that case, the above AIC and OFV criteria do not match, as the components of the likelihood in equation (13) are no longer independent (they can only independent if the true values of \(\eta \) for the individuals are also zero). Note however, that from the higher perspective of optimally characterizing a future set of population data, this is a less important case.

Finally, it should be noted that the parameter estimates may not be consistent (i.e., do not converge to their true values when the amount of data goes to infinity if the \(\hat{y} \) do not properly account for heteroscedasticity\(^{11} \)). In the derivation of AIC\(^{\nu} \), it is only required that the likelihood function is maximized; consistency is not required.

References

Open Peer Review

Current Peer Review Status: ✔️ ❌ ❔

Version 2

Reviewer Report 22 August 2014

https://doi.org/10.5256/f1000research.4469.r4893

© 2014 Eilers P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Paul Eilers
Department of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands

The explanation in the authors' response, about the effective degrees of freedom, clarifies the matter. That will be helpful to the readers.

I noticed a typo in the second paragraph of the Introduction, explaining the OFV. Change to "... (OFV), being minus two times the logarithm ...".

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 24 June 2014

https://doi.org/10.5256/f1000research.4469.r5213

© 2014 Bertrand J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Julie Bertrand
UCL Genetics Institute, University College London, London, UK

Abstract:
 ○ “[W]ith three degrees of inter... volume of distribution” This does not make sense, as no mention of the volume parameter is made afterward in the body of the text.

Introduction:
 ○ “Fixed effects are ... the measurements obtained”, Usually the fixed effects are the
population/average/mean values of the model parameters, so this sounds incorrect perhaps because it's out of context.

Methods:
- The authors should be clearer about the model parameters that are estimated: K non-zero parameters α_m (?), as K doesn't even appear in equation (3)?
- What are those α_m? Do they correspond to dose/volume in an IV bolus equation? Then I'm not sure one can identify M in such parameters?
- "Note that with $N > 1$, a perfect fit is no longer obtained with $K = M$ nonzero coefficients α, because the ϵ_{ij} are generally different for different i (individuals)" The authors should add that it is the case here because in their model there is only one random effect per individual.
- The constraint/absence of constraint on the α_m is not clear; those parameters were not constrained so they could be equal to zero? The authors should be more explicit.
- "[U]sing predictions based on equation (7) with the random effects $\eta_i = 0$, and validation data $z_i(t_j)$ also generated via equation (6), but with different realizations of ϵ_{ij} and η" It is not clear to me how those predictions were obtained? How are the random effect and residual errors generated (type and parameter values of the distributions)?
- "The above criteria were normalized by dividing them by the number of observations, and averaged over 1000 runs" Seems incorrect or not explained enough. In mixed effect models you cannot compare two designs solely on the total number of observations. The information is not the same for $n_{tot} = 20$ resulting from i) 2 subjects with 10 samples each and ii) 5 subjects with 4 samples each.
- In Figure 3, the plots of OFV versus -2LL, AIC and AICc do not make sense to me as the relationship is evident from the equations, plus there is no explanation about what the separate points correspond to.

Discussion:
- I am not convinced by the section on BIC as the claims are rather strong in absence of comparison on the simulations. I suggest the authors shorten it.
- The first section of "Model selection criterion AIC and predictive performance" does not make sense to me, are the authors talking about AIC capability to select a model that would predict new subjects? I thought that was the criteria they actually used.
- Also in "Model selection criterion AIC and predictive performance" the last section seems full of strong claims again (as for BIC) not justified through the present simulation study; I would suggest the authors remove the 1st and last sections I've mentioned.
- "In practice, when the weights are unknown, a choice must be made to weight the data according to the measurements or to the model output, depending on which is likely to be the most accurate." There is literature about NOT using the measurements but the model output, that should be corrected.
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 30 Jun 2014

Erik Olofsen, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands

We thank the reviewer for pointing out those parts of the text that are unclear. Changes to the article will be based on the following observations.

- The simulated interindividual variation influences the concentration level, which is related to volume, and no other disposition characteristics - an explanation will be added to the description of the population model.

- The term "fixed effect" is perhaps not well defined in the literature. In the linear fixed effects model $Y = X\beta$, X (the design matrix) as well as β (the coefficients) are sometimes called fixed effects. In NONMEM's guide V, time - which would be part of the design matrix - is called a fixed effect. Time influences the model output in a non-random manner; how it influences the output depends on the model, and on model parameters. Therefore, a population value of a model parameter is similar to the value of a "fixed effect parameter", and then time could be called a "fixed effect factor".

- The coefficients α are related to disposition characteristics and are parameters to be estimated. This was stated explicitly only in the legend of Table 1, so we agree this should be better explained. Because of the link between the considered sum of exponentials and the integral in equation (2), one would expect the α to be positive, but this constraint was not imposed. The M time constants λ are fixed and have distinct values, so that M coefficients α are identifiable. $M-K$ coefficients were fixed to zero according to Table 1, to obtain models with K free parameters. Indeed, to obtain a perfect fit with more than one individual, M random effects are needed.

- The log likelihood function with known parameter values and homoscedastic random effects is both linear in the number of observations per subject and in the number of subjects. Then the expected values of the log likelihoods for the two designs that you give are equal. The ratio of the estimated log likelihood and the total number of observations is a measure of the entropy in the data due to the random effects (the dashed lines in figure 3), with a deviation due to estimation error (possibly different for the two designs). But although this is interesting, the normalization is indeed also confusing and not essential for our study.

- The plot of OFVv versus -2LL should demonstrate that a lower objective function does not imply a lower prediction error and the plots of OFVv versus AIC and AICc that it is AICc, and not AIC, which corresponds closely to prediction error. Only plots of AIC
and AICc versus -2LL would be relatively trivial. We agree that the number of exponentials should be indicated next to the dots.

- We expect the claims on BIC versus AIC in the literature to hold for mixed effect models, but we agree that the range of effective sample sizes used in the present study is not sufficient to provide firm additional support.

- The first section of "Model selection criterion AIC and predictive performance" is best deleted and the second section slightly rewritten. Interindividual variation in a new set of data is predicted by a distribution rather than only its mode.

- To compare models with AIC in weighted regression, the weights should be the same, which is true when using the measurements, and not so when using the model output as weights, because the models are different. Therefore the model output of the best model could be used as weights. On the other hand, the output of the models should be quite similar, so that the postulated likelihood function approximately holds for the data, which might not hold as well when using the measurements as weights.

Competing Interests: No competing interests were disclosed.

Author Response 18 Mar 2015

Erik Olofsen, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands

The normalization of the likelihood by dividing by the total number of measurements was done to have a “target” value for the estimates indicated in the figures. When the between individuals variance is zero, the normalized value is independent of the number of measurements and individuals. When the between individuals variance is greater than zero, and the number of measurements per individual M is finite, the normalized value is larger, and in a nonlinear fashion depending on M, than this target. Therefore the two designs mentioned above are indeed different. This will be addressed in the next version.

Competing Interests: No competing interests were disclosed.
Julie Bertrand
UCL Genetics Institute, University College London, London, UK

The title should indeed specify that this work focuses on pharmacokinetics (PK). However I must add that the model function considered is unusual enough that it seems difficult to extend their conclusions to a real PK study analysis.

The abstract is too general and more details should be provided on the simulation study (model function, number of samples, number of subjects, number of random effects) and the results (differences between selection on OFV, AIC and AICc, impact of increasing the random effect variance).

The whole methodology is very well described. But one aspect is missing, as underlined by the other reviewer: the (very direct here) link with the best sum of exponential model and the information in the design. I was not much surprised that K=6 (or 5) exponential got the best AIC when you have 11 evenly spaced samples and the candidate models all had evenly spaced rate constants. Also, why not investigate the performance of BIC (with log(N) and log(NxM))?

Finally, the conclusions are balanced in the sense that the authors have rightly identified the limit of their exercise which is the generalization of their results to a real PK data analysis: only one random effect, no covariance parameters, only slope parameters, etc...

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 07 May 2013
https://doi.org/10.5256/f1000research.869.r928
number of models. If used in a stepwise process it can result in all the severe problems that stepwise variable selection has. The authors need to be much more careful about multiplicity and model uncertainty. This needs to be carefully discussed, and the authors would add to the literature if they can derive the maximum number of models that can be compared with AIC before the method breaks down.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Reviewer Report 05 March 2013

https://doi.org/10.5256/f1000research.869.r809

© 2013 Eilers P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Paul Eilers
Department of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands

This is an interesting and useful study, written in a relaxed style. I believe we need more studies like this, because there is a lot of folklore around AIC, mainly claiming that is generally over-fits.

I have one major objection: the effective dimension (ED) of a mixed model is less than the number of parameters (D), because shrinking takes place. The easiest way to obtain ED is to compute the trace of the “hat” matrix. In linear models this is relatively easy. In non-linear models it is harder. What one needs is (in LaTeX notation) $h_{ii} = \partial \hat{y}_i / \partial y_i$. I can provide more details if needed. I don't know if NONMEM can provide the needed quantities.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response () 05 Mar 2013

Erik Olofsen, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands

Thank you for your comments. Vaida and Blanchard (ref. 5 above) discuss two settings: model focus and cluster focus. In the former setting, the effective number of parameters equals the number of fixed effects parameters and variance components (p.354); in the
latter setting, the effective number of parameters needs to be estimated in the way you outlined. The first setting, corresponding to the situation of predicting data of "new" subjects, is the one for which the study results should be valid.

Competing Interests: No competing interests were disclosed.