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Abstract
During the last decades, the outlook on vitamin D has widened, from being a
vitamin solely involved in bone metabolism and calcium homeostasis, to being
a multifunctional hormone known to affect a broad range of physiological
processes. The aim of this review is to summarize the research on vitamin D as
a regulator of steroidogenic enzymes. Steroid hormones exert a wide range of
physiological responses, including functions in the immune system, protein and
carbohydrate metabolism, water and salt balance, reproductive system and
development of sexual characteristics. The balance of sex hormones is also of
importance in the context of breast and prostate cancer. Steroid hormones are
synthesized in steroidogenic tissues such as the adrenal cortex, breast,
ovaries, prostate and testis, either from cholesterol or from steroidogenic
precursors secreted from other steroidogenic tissues. The hormonally active
form of vitamin D has been reported to act as a regulator of a number of
enzymes involved in the regulation of steroid hormon production, and thereby
the production of both adrenal steroid hormones and sex hormones. The
research reviewed in the article has in large part been performed in cell culture
based experiments and laboratory animal experiments, and the physiological
role of the vitamin D mediated regulation of steroidogenic enzyme need to be
further investigated.
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Vitamin D - a multifunctional hormone
Vitamin D was discovered in the early 20th century when it was 
described that rickets could be cured by sunlight or cod liver oil. This 
fat-soluble vitamin was the fourth vitamin described and therefore 
designated as vitamin D. Vitamin D was found to regulate intesti-
nal absorption and renal reabsorption of calcium and bone metabo-
lism. Later research has demonstrated that vitamin D can be obtained 
from the diet or be de novo synthesized from 7-dehydrocholesterol. 
Further, the active form of vitamin D, 1α,25-dihydroxyvitamin D

3
, 

interacts with a receptor in the target cells, showing that vitamin D 
should be biochemically characterized as a hormone rather than as 
a vitamin1.

During the last decades, the outlook on vitamin D has widened, 
from being a vitamin solely involved in bone metabolism and calcium 
homeostasis, to being a multifunctional hormone known to affect  
a broad range of physiological processes. This includes effects on 
the immune system, brain and fetal development, insulin secretion, 
cancer, apoptosis, cell proliferation and differentiation as well as 
the cardiovascular system via the vitamin D receptor (VDR)1–4. The 
vitamin D receptor is widely expressed and it has been suggested 
that 1α,25-dihydroxyvitamin D

3
 may have other roles yet undiscov-

ered3,5,6. The aim of this paper is to review the literature on effects of 
vitamin D and vitamin D analogs on steroidogenic enzymes.

Bioactivation and metabolism of vitamin D
There are two forms of vitamin D, vitamin D

2
 (ergocalciferol) and 

vitamin D
3
 (cholecalciferol). Ergocalciferol is synthesized in plants, 

yeast and fungi while cholecalciferol is synthesized in animals. 
Vitamin D

3
 is synthesized in the skin from 7-dehydrocholesterol 

upon exposure to UV-B radiation. Vitamin D
3
 is then bioactivated 

in two subsequent steps to gain the biologically active form of 
vitamin D (Figure 1). In the first step, vitamin D

3
 is 25-hydroxy-

lated to 25-hydroxyvitamin D
3
 (calcidiol). 25-Hydroxylation of 

vitamin D is a reaction that can be catalyzed by the mitochondrial 
CYP27A1 and the microsomal CYP3A4, CYP2R1 and CYP2J2 
in humans. 25-Hydroxylation of vitamin D is mainly performed 
in the liver and calcidiol is then excreted into the circulation. Cal-
cidiol is converted to 1α,25-dihydroxyvitamin D

3
 (calcitriol) by 

1α-hydroxylation, mainly performed in the kidneys. The principal 
human 1α-hydroxylase for 25-hydroxyvitamin D

3
 is CYP27B1. 

The 1α,25-dihydroxyvitamin D
3
 produced is excreted into the cir-

culation and acts as a hormone1,3,4,7–9.

Extrarenal 1α-hydroxylation of 25-hydroxyvitamin D
3
 has been 

reported for a wide range of tissues, including colon, brain, mam-
mary tissue, breast, pancreatic islets, parathyroid glands, placenta, 
prostate and keratinocytes3,7. These findings suggest that 1α,25-
dihydroxyvitamin D

3
 may be produced locally and act in an intracrine 

or paracrine fashion. It may be speculated that the local concentra-
tion of 1α,25-dihydroxyvitamin D

3
 in these tissues could be higher 

than the circulating levels.

The normal serum level of calcidiol is 50–100 nM and for calci-
triol 50–125 pM3. Calcitriol is the most potent form of vitamin D 
even though calcidiol can exert some biological effects as well. The 
circulating levels of 1α,25-dihydroxyvitamin D

3
 is tightly regu-

lated via a feed-back mechanism where 1α,25-dihydroxyvitamin 
D

3
 downregulates the expression of CYP27B1 and upregulates the 

expression of CYP24A18.

Both calcidiol and calcitriol is metabolized by CYP24A1 to the 
less active compounds 24,25-dihydroxyvitamin D

3
 and 1α,24,25-

trihydroxyvitamin D
3
 respectively10. It has recently been reported 

that CYP11A1 can catalyze the production of 20-hydroxyvitamin D
3
 

from vitamin D
3
 and the production of 1α,20-dihydroxyvitamin D

3
 

from 1α-hydroxyvitamin D
3
11–15. Both these metabolites have been 

reported to exert biological effects on cell differentiation and gene 
expression in a way resembling the one of 1α,25-dihydroxyvitamin 
D

3
11,12. The physiological role, if any, of this CY11A1-mediated 

metabolism of vitamin D remains to be clarified.

Mode of action
The bioactivated form of vitamin D alters the gene expression of a 
large number of genes. It is well known that 1α,25-dihydroxyvitamin 
D

3
 can act either to increase the gene expression or decrease the 

gene expression, depending on the gene in question. For exam-
ple, 1α,25-dihydroxyvitamin D

3
 increases the gene expression of 

Figure 1. Bioactivation of vitamin D3 to its hormonally active form, 1α,25-dihydroxyvitamin D3.
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CYP24A1 while it increases the gene expression of CYP27B1. 
Both these effects of the hormonally active form of vitamin D are 
mediated via a VDR dependent mechanism. The mechanism for 
1α,25-dihydroxyvitamin D

3
-mediated induction of gene expres-

sion is well known and based on the interaction between the 1α,25-
dihydroxyvitamin D

3
-activated VDR and a vitamin D responsive 

element (VDRE) in the gene promoter. These positive VDRE 
(pVDRE) consist of a hexameric direct repeat of the consensus 
sequence 5´-RGKTCA (R=A or G, K=G or T)16. The two half sites 
are separated by a three nucleotide spacer. The ligand-activated 
VDR-RXR complex interacts with the pVDRE and acts as a tran-
scription factor to increase the transcriptional rate by recruiting 
coactivators3.

However, the mechanism for 1α,25-dihydroxyvitamin D
3
-mediated 

downregulation of gene expression has in large part remained 
unclear17. Studies have only been performed for a few genes, regard-
ing the molecular mechanism for the vitamin D-mediated downreg-
ulation of gene expression. For these genes, it has been suggested 
that the mechanism could include recruitment or displacement 
of corepressors, such as VDR interacting repressor (VDIR) and 
Williams syndrome transcription factor (WSTF), from the promoter 
sequence. Further, it has been proposed that epigenetic changes 
such as histone deacetylation and DNA methylation might be 
involved in the mechanism18–23. The negative vitamin D response 
elements (nVDRE) described show a very low level of similarity 
to the pVDRE described21. Furthermore, it has been proposed that 
the mechanism for vitamin D-mediated downregulation of gene 
expression is not based on a direct interaction between the ligand-
activated VDR and the promoter sequence, but rather an in-direct 
interaction via comodulator VDIR18.

Recently, it has been shown in genome-wide ChIP-seq experiments 
that VDR has a large number of binding sites throughout the 
genome24–26. These binding sites have been found to be located pre-
dominantly within introns and intergenic regions and often far away 
from the transcriptional start site26. The physiological role of these 
binding sites remains to be elucidated.

Vitamin D has also been reported to exert rapid effects only sec-
onds or minutes after treatment. Due to the quick response, it has 
been suggested that these effects are non-genomic and mediated by 
membrane-bound receptors27.

Steroid hormone synthesis
All steroid hormones are synthesized from the common precursor 
cholesterol, which can be obtained from the diet or de novo syn-
thesized from acetyl CoA. The production of steroid hormones is 
regulated via a number of enzymes of which a majority belongs to 
the cytochrome P450 (CYP) superfamily.

Steroid hormones exert a wide range of physiological responses, 
including functions in the immune system, protein and carbohy-
drate metabolism, water and salt balance, reproductive system and 
development of sexual characteristics. Steroid hormones are syn-
thesized in steroidogenic tissues such as the adrenal cortex, breast, 
ovaries, prostate and testis, either from cholesterol or from steroido-
genic precursors secreted from other steroidogenic tissues.

Adrenal steroidogenesis
The adrenal cortex produces steroid hormones such as aldoster-
one, corticosterone, cortisol, dehydroepiandrosterone (DHEA) and 
androstenedione. An overview of steroids and enzyme-catalyzed 
reactions in the adrenal steroidogenesis is shown in Figure 2. The 
adrenal steroidogenesis is quantitatively regulated by the transcrip-
tion of CYP11A1 (cholesterol side-chain cleavage enzyme) and the 
activity of steroidogenic acute regulatory protein (StAR).

There are three adrenocortical zones, each with a distinct role in 
the production of steroid hormones; zona glomerulosa produces 
mineralocorticoids (e.g. aldosterone), zona fasciculata produces 
glucocorticoids (e.g. cortisol) and zona reticularis is the point of 
synthesis for adrenal androgens (e.g. DHEA). The qualitative regu-
lation of adrenal steroidogenesis, determining which type of steroid 
that will be produced, is performed by the transcription and activity 
of CYP17A1. CYP17A1 catalyzes two different reactions, namely 
the 17α-hydroxylation and the 17,20-lyase reaction. The expres-
sion and activity of CYP17A1 differs between the three adrenal 
zones28–30. CYP17A1 is not expressed in zona glomerulosa lead-
ing to the production of mineralocorticoids. In zona fasciculata, 
CYP17A1 is expressed and catalyzing 17α-hydroxylation, but not 
the 17,20-lyase activity, leading to glucocorticoid production. In 
zona reticularis, CYP17A1 catalyzes both 17α-hydroxylation and 
17,20-lyase activities and adrenal androgens are therefore the main 
product of adrenal steroidogenesis in this adrenal zone28. To control 
the production of steroid hormones, it is essential to regulate the two 
activities of CYP17A1 separately. The 17α-hydroxylase activity of 
CYP17A1 is regulated via the gene expression of CYP17A1. On 
the other hand, the 17,20-lyase activity of CYP17A1 is regulated 
via posttranscriptional mechanisms28–34. The adrenal zone-specific 
activities of CYP17A1 are summarized in Figure 3.

The 17,20-lyase activity has been reported to be regulated via three 
posttranscriptional mechanism; the abundance of P450 oxidore-
ductace (POR)35,36, allosteric action of cytochrome b537 and ser-
ine phosphorylation of CYP17A138–41. In 1972, Zachman et al.42 
described the first case of isolated 17,20-lyase deficiency, which 
is a rare condition. 17,20-Lyase deficiency could be a result of a 
mutated cytochrome b5, according to a recent report43. CYP17A1 
deficiency, or impaired CYP17A1 activity due to altered posttran-
scriptional mechanisms, may lead to hypertension, hypokalemia and 
impaired development of sexual characteristics due to decreased 
production of adrenal androgens. Patients that are genetically male 
often present complete male pseudohermaphroditism while female 
patients may be infertile44–46.

It has been reported that CYP17A1 strongly prefers 17α-hydroxy-
pregnenolone over 17α-hydroxyprogesterone as a substrate for 
17,20-lyase activity in humans28,47. 17α-Hydroxyprogesterone may, 
however, be a substrate for CYP17A1 in other species47.

CYP21A2 is a steroid 21-hydroxylase catalyzing the production of 
deoxycorticosterone and 11-deoxycortisol, which are precursors for 
the production of corticosterone, aldosterone and cortisol. 21-Hydrox-
ylase deficiency may lead to severe conditions such as congenital 
adrenal hyperplasia and Addison´s disease48. CYP21A2 is exclu-
sively expressed in the adrenal cortex28. Therefore, glucocorticoids  
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Figure 2. Overview of steroids and enzyme-catalyzed reactions in the adrenal steroidogenesis.

Figure 3. Adrenal zone-specific activities of CYP17A1.
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and mineralocorticoids cannot be synthesized in other tissues than 
the adrenal cortex.

Sex hormone production
Sex hormones are mainly produced in the gonads, breast and pros-
tate. The sex hormones in these tissues are produced either by 
in situ synthesis from cholesterol or by enzyme catalyzed conver-
sion of DHEA or androstenedione excreted to the circulation from 
the adrenal cortex.

The sex hormones are divided into two groups; androgens and estro-
gens. Androgens such as testosterone and 5α-dihydrotestosterone 
(DHT) are produced via reactions catalyzed by 17β-hydroxysteroid 
dehydrogenase (17β-HSD) and 5α-reductase. Estrogens, such as 
17β-estradiol (estradiol), are produced by aromatization of andro-
genic precursors, a reaction catalyzed by CYP19A1 (aromatase). 
Hence, the tissue-selective expression and activity of 5α-reductase 
and aromatase regulates the production of androgens and estro-
gens49,51. For some of these steroids, it remains unclear if they act 
as estrogens or as androgens or if they are inactive metabolites52. To 
fully understand the estrogenic and/or androgenic signaling exerted 
by these steroids is of utmost importance in research on eg. breast 
and prostate carcinogenesis.

It is crucial to regulate the levels of sex hormones in order to achieve 
normal gonadal development. Abnormally high levels of estrogens 
and androgens are associated with increased risk for breast cancer 
and prostate cancer, respectively50,53–55.

Vitamin D and analogs as regulators of steroidogenic 
enzymes
Adrenal steroidogenesis
A link between vitamin D and the adrenal steroidogenesis has been 
proposed in a few very early reports56,57. In a paper from 1959, 
De Toni et al.56 describes several clinical cases involving children 
with rickets having changes in urinary 17-ketosteroid levels. It is 
suggested in the paper that the altered steroid production may involve 
some action of vitamin D. Furthermore, the authors propose that 
disturbances in steroid metabolism might be due to sensitivity or 
resistance of organisms to antirachitic vitamins57. More recently, 
a case has been described where a woman with osteomalacia was 
reported to have elevated serum levels of aldosterone and simulta-
neously low levels of 25-hydroxyvitamin D58. After 24 months of 
treatment with vitamin D, the condition was normalized.

Recently, Lundqvist et al.59 investigated the effects of 1α,25-
dihydroxyvitamin D

3
 on the adrenal steroidogenesis. We studied 

the effects of 1α,25-dihydroxyvitamin D
3
 on the gene expression of 

key steroidogenic enzymes, the enzyme activity and the hormone 
production. The study was performed in the human adrenocortical 
carcinoma cell line NCI-H295R. We found that the mRNA levels of 
three key enzymes in the adrenal steroidogenesis, CYP11A1, CY-
P17A1 and CYP21A2 were altered by 1α,25-dihydroxyvitamin D

3
 

treatment. CYP11A1 and CYP17A1 mRNA levels were upregulated 
after vitamin D treatment, while CYP21A2 mRNA level was sup-
pressed by the same treatment. No significant changes were observed 
in the mRNA levels of CYP11B1, CYP11B2 and 3βHSD. Further, 
we found that 1α,25-dihydroxyvitamin D

3
 treatment decreased the 

production of corticosterone, androstenedione, dehydroepiandros-
terone (DHEA) and DHEA-sulfate (DHEA-S), while the produc-
tion of aldosterone and cortisol was unaltered. Moreover, we meas-
ured the enzyme activity of CYP21A2 and CYP17A1 by adding a 
known amount of substrate to the cell culture and measuring the 
turnover of substrate to product. In resemblance with the effects on 
mRNA level, CYP21A2 enzyme activity was suppressed by 1α,25-
dihydroxyvitamin D

3
. CYP17A1 catalyzes two separate reactions, 

the 17α-hydroxylation and the 17,20-lyase reaction. We found that 
treatment with vitamin D resulted in increased 17α-hydroxylation 
activity of CYP17A1, but in decreased 17,20-lyase activity of CYP17A1.

The regulation of the two activities of CYP17A1 uses two principally 
different mechanisms. The 17α-hydroxylase activity is regulated by 
alterations of the gene expression of CYP17A1. The 17,20-lyase 
activity, on the other hand, is regulated via posttranscriptional 
mechanisms28,31–34. It has been reported that the 17,20-lyase activity 
is regulated via three mechanisms; the abundance of P450 oxidore-
ductase (POR)35,36, allosteric action of cytochrome b537 and serine 
phosphorylation of CYP17A138–41. The discrepancy between the 
1α,25-dihydroxyvitamin D

3
-mediated increase in expression of 

CYP17A1 mRNA and the suppression of 17,20-lyase activity could 
be a result of posttranscriptional mechanisms affected by 1α,25-
dihydroxyvitamin D

3
.

In a subsequent report22, we investigated the molecular mechanism 
for the effect of 1α,25-dihydroxyvitamin D

3
 on CYP21A2 gene 

expression. We found that 1α,25-Dihydroxyvitamin D
3
 altered the 

promoter activity of CYP21A2 via a mechanism involving VDR 
and a vitamin D response element in the CYP21A2 promoter. Fur-
ther, we found that the mechanism included interaction of the comod-
ulators VDR interacting repressor (VDIR) and Williams syndrome 
transcription factor (WSTF) to the gene promoter.

Chatterjee and collaborators60,61 have reported that ligand-activated 
VDR upregulates the expression of sulfotransferase 2A1 (SULT2A1), 
an enzyme that catalyzes the conversion of dehydroepiandrosterone 
(DHEA) to dehydroepiandrosterone-sulfate (DHEA-S).

Sex hormone production
The production of sex hormones is regulated by multiple enzymes. 
Vitamin D has been reported to affect the expression and activity of 
several of these enzymes.

17β-hydroxysteroiddehydrogenases. Wang and Tuohimaa62 have 
reported that 1α,25-dihydroxyvitamin D

3
 upregulates the mRNA 

level for 17β-hydroxysteroid dehydrogenases (17β-HSD) type 2, 4 
and 5 in cell lines derived from human prostate. In keratinocytes, 
Hughes et al.63 have reported that 1α,25-dihydroxyvitamin D

3
 stim-

ulates the expression of 17β-HSD type 1 and 2.

Aromatase. It has been shown that 1α,25-dihydroxyvitamin D
3
 

alters the aromatase activity in placental cells64,65, prostate cells66 
and osteoblasts67,68. Kinuta et al.69 have reported that vitamin D recep-
tor null mutant mice have a decreased aromatase activity in the 
ovary, testis and epididymis. Recently, it was reported that 1α,25-
dihydroxyvitamin D

3
 alters the gene expression of aromatase in 

a tissue-selective manner70. In breast cancer cell lines, vitamin D 
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treatment resulted in decreased aromatase gene expression, while 
the same treatment increased the aromatase gene expression in 
osteosarcoma cell lines. 1α,25-Dihydroxyvitamin D

3
 has therefore 

been proposed to be a tissue-selective aromatase modulator70.

We have investigated the effects of 1α,25-dihydroxyvitamin D
3
 on 

the aromatase gene expression and estradiol production in human 
breast carcinoma MCF-7 cells, human adrenocortical carcinoma 
NCI-H295R cells and human prostate cancer LNCaP cells71. We 
found that the hormonally active form of vitamin D altered the 
estrogen and androgen metabolism in a cell line specific manner. 
Aromatase gene expression and estradiol production was found to be 
decreased in breast cancer cells, while the androgen production was 
markedly increased in the same cell line. 1α,25-dihydroxyvitamin 
D

3
 was found to increase the aromatase gene expression and 

decrease dihydrotestosterone production in adrenocortical cells. 
In prostate cancer cells, aromatase gene expression was found to 
be increased after 1α,25-dihydroxyvitamin D

3
 treatment. Further-

more, we studied the effects of 1α,25-dihydroxyvitamin D
3
 on three 

different aromatase promoters, and found that the transcriptional 
rate of these promoters were affected by 1α,25-dihydroxyvitamin 
D

3
 in a cell line-specific manner.

In a subsequent study, we have shown that the substance EB1089 
(a vitamin D analog with decreased hypercalcemic effect) is able to 
inhibit the aromatase gene expression by dissociation of comodula-
tor WSTF from the CYP19A1 promoter in human breast cancer 
MCF-7 cells23. Furthermore, 1α,25-dihydroxyvitamin D

3
 and ana-

logs have been reported to alter sex hormone signaling by sup-
pressing the expression of estrogen receptor α72–77. It has also been 
reported that vitamin D deficiency alters reproductive functions in 
both male and female rats, indicating that vitamin D may affect sex 
hormone signaling78,79.

Concluding remarks
In conclusion, 1α,25-dihydroxyvitamin D

3
 has been shown to regu-

late the gene expression and enzyme activity of a number of steroi-
dogenic enzymes, and the corresponding hormone production. The 
physiological role of these vitamin D effects remains to be elucidated 
in many cases, especially for the adrenal steroidogenic enzymes. 
More research has been conducted on the physiological role and 
potential medical use of the effects of vitamin D on estrogen pro-
duction and action in breast cancer. Cell culture based experiments 
and laboratory animal experiments has clearly shown that 1α,25-
dihydroxyvitamin D

3
 is able to decrase the production and action 

of estrogens in breast cancer models, and also the growth of breast 
cancer xenotumors70,72–75,80. Based on these findings, vitamin D or 
analogs has been proposed to be of potential use as an anti-cancer 
agent76,81–84 and a large number of clinical trials (e.g. ClinicalTri-
als.gov identifiers NCT00656019, NCT01472445, NCT01965522, 
NCT01948128, NCT01787409, and NCT01097278) are currently 
being conducted using vitamin D or analogs in different settings to 
investigate the potential use in the prevention or treatment of breast 
cancer.
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Lundqvist has overviewed the effects of Vitamin D on steroidogenesis. Overall, the manuscript is
disorganized. In addition, there are many serious issues:
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Page 2, last line: "For example, 1α,25-dihydroxyvitamin D3 increases the gene expression
" Why are both genes areof CYP24A1 while it increases the gene expression of CYP27B1.
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although animal models with deletions in VDR and CYP27B1 have been available for years.
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stimulus for that research to occur.

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact   research@f1000.com

Page 10 of 10

F1000Research 2014, 3:155 Last updated: 26 SEP 2018

http://dx.doi.org/10.5256/f1000research.5036.r5396

