RESEARCH ARTICLE

One year adjustable intragastric balloon: safety and efficacy of the Spatz3 adjustable balloons [version 1; referees: 2 approved with reservations]

Evzen Machytka¹, Jeffrey Brooks², Marek Buzga¹, John Mason³

¹ Faculty of Medicine, University of Ostrava, Ostrava, 708 52, Czech Republic
² Spatz FGIA, Great Neck, NY, USA
³ Trafford General Hospital, National Obesity Surgery Center, Manchester, M41 5SL, UK

Abstract

Background: The Spatz3 Adjustable balloon system is approved for 1 year implantation and allows multiple changes in the balloon volume during the course of implantation. Other intragastric balloons are currently approved for 6 months and their balloon volumes cannot be adjusted after implantation.

Aim: To determine the efficacy and safety of the Spatz3 adjustable balloon system.

Methods: Seventy seven consecutive patients (66 females and 11 males) in two medical centers were implanted with the Spatz3 adjustable balloon device and were followed prospectively. The patients' mean BMI was 37.2; the mean weight was 108.7 kg; the mean age was 41 (16-68); the mean balloon volume was 469 ml (450-500 ml). Adjustments were made for intolerance or weight loss plateau.

Results: The mean weight loss at 1 year was 17.2 kg with 15.9 % weight loss and 42.9 % Excess Weight Loss (%EWL). Eighteen patients underwent balloon volume adjustments: three downward adjustments of 100 -150 cc which alleviated early intolerance; 15 upward adjustments (mean 320 ml; range 200-500) at a mean 4.1 months (range 2-5 months) yielded additional mean wt loss of 8.2 kg (range 0-25 kg) after the adjustment. Three balloons were removed before the 1 year completion date due to intolerance and three others were removed for other reasons (pregnancy, gall bladder surgery, and alcoholism). There was one episode of gastric ulceration which required endoscopic therapy and balloon removal. There were no deflations or perforations.

Conclusions: The Spatz3 adjustable balloon is a safe and effective treatment for weight loss. The adjustability function can yield greater weight loss for those who show weight loss plateau and can mitigate intolerance.
Introduction
Intragastric balloons (IGBs) have been successfully used to achieve weight loss for the past 30 years. Previously published results revealed an average weight loss of 12–15 kg over 6 months with an excellent safety profile1-16. The Spatz Adjustable balloon was introduced in 2010 as the first IGB approved for 1 year implantation while featuring an adjustability function that afforded balloon volume changes as needed. It was approved in May 2010 in all 27 countries of the European Union for patients with BMI > 27 that failed previous attempts at weight loss (certificate number 10 0384 QS/NB). The adjustability function was developed to address the issues related to other standard 6 months IGBs; 1) reduced efficacy after 2 to 3 months from implantation1-6, and 2) significant nausea, vomiting, and discomfort in the early implantation period, necessitating balloon extraction in 4–7% of patients1-2. Two studies have reported results showing that the Spatz adjustable balloon can result in weight losses of 21.6 kg (45.7% Excess Weight Loss, EWL) and 24.4 kg (48.8% EWL) respectively17,18. In 2012, the Spatz3 adjustable balloon was approved for 1 year implantation with the same features as the original Spatz balloon, but with a softer and smaller profile catheter.

We report our experiences with the Spatz3 adjustable balloon in the Czech Republic and the UK.

Patients and methods
The Spatz3 ABS (Spatz3 Adjustable Balloon System, Spatz FGIA, Inc. NY, USA) was implanted at the University Hospital, Ostrava, Czech Republic and at the Trafford General Hospital, Manchester, UK. Seventy seven consecutive patients were selected according to National Institutes of Health criteria and guidelines for obesity surgery19 and were independently evaluated by members of staff: gastroenterologists, dieticians, and psychologists. Previous esophageal or gastric surgery, bowel strictures or history of bowel obstruction, inability to comply with frequent follow up, inability to tolerate endoscopic procedures or multiple episodes of vomiting were grounds for exclusion. No patients were excluded from implantation. The implantations were performed under the approval of the Ethics Committee and informed consent was obtained from all patients. The records of relevant co-morbidities, medications or family history were not available for review. Indications for Spatz ABS implantation included one of the following: (1) temporary weight loss treatment in patients with body mass index (BMI) in the range of bariatric surgery (>35) who refused surgery or were at high risk for surgery, (2) temporary weight loss treatment for patients with no indications for surgery (BMI 29–35). All patients underwent endoscopy using conscious sedation (Midazolam 5–10 mg and Fentanyl 50–100 mcg).

Balloons were inflated with normal saline with the addition of 5 ml of undiluted methylene blue. Patients were recovered for 45 minutes and discharged the same day on pantoprazole 40 mg BID, ondansetron 4 mg BID, and a progressive clear liquid diet for 3–5 days. After the fifth postoperative day, the patients began a progressive solid 1,000 kcal diet. Monthly follow up was offered to all patients after implantation. Patients who were intolerant to the balloon could be adjusted downward by 100–150 ml, and those who did not lose weight, or whose weight loss reached a plateau could be adjusted upward by a volume of 250–500 ml at the discretion of the endoscopist. After 12 months of placement, the balloon was deflated by grasping the valve with a snare, and attaching an extension tube through which suction was applied, or via needle puncture. The device was removed endoscopically under conscious sedation using a grasping forceps or a polypectomy snare.

Endpoints
The primary endpoints of the study were successful implantation, adjustment and extraction of the Spatz device, without bowel obstruction, perforation, ulceration or hemorrhage. Secondary endpoints were a > 10% weight loss; additional weight loss following adjustment; and salvage patients following adjustment for intolerance. The final overall results were calculated based on all patients that were implanted with the balloon, including those that completed treatments as well as those that did not complete 12 months for various reasons. Those patient dropout results were calculated based on weight at 12 months.

Results
From January 2012 to June 2013, 77 consecutive patients (66 female, 11 male) underwent Spatz3 ABS placement with demographics displayed in Table 1. The mean age was 41, with a mean weight of 108.7 kg, and a mean excess weight of 42.9 kg and a mean BMI of 37.2.

Seventy patients completed the 12 month implantation period and seven patients underwent early removal. The causes of early removal were pregnancy, gall bladder surgery, alcoholism, gastroesophageal reflux disease (GERD), early intolerance and intermittent intolerance (both refusing downward adjustment) and one bleeding gastric ulcer. These are displayed in Table 2.

Table 1. Demographics.

<table>
<thead>
<tr>
<th>Age</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>108.7</td>
<td>70–177 kg</td>
</tr>
<tr>
<td>Excess Weight</td>
<td>42.9</td>
<td>15–84 kg</td>
</tr>
<tr>
<td>BMI</td>
<td>37.2</td>
<td>29.3–50</td>
</tr>
</tbody>
</table>

Table 2. Early removals.

<table>
<thead>
<tr>
<th>Time of removal</th>
<th>Reason for early removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>Pregnancy</td>
</tr>
<tr>
<td>6 months</td>
<td>Gall bladder surgery</td>
</tr>
<tr>
<td>10 months</td>
<td>Alcoholism</td>
</tr>
<tr>
<td>2 months</td>
<td>Intolerance due to GERD (Refused downward adjustment)</td>
</tr>
<tr>
<td>3 ½ weeks</td>
<td>Early intolerance (Refused downward adjustment)</td>
</tr>
<tr>
<td>6 ½ months</td>
<td>Intermittent intolerance (Refused downward adjustment)</td>
</tr>
<tr>
<td>5 months</td>
<td>Gastric ulcer</td>
</tr>
</tbody>
</table>

Page 3 of 7
The mean weight loss was 17.2 kg, with a mean % weight loss of 15.9% and a mean % excess weight loss of 40.1%. A > 10% weight loss was obtained in 80.3% of our patients.

Weight loss results of the implanted patients are displayed in Table 3.

Table 3. Weight loss results.

<table>
<thead>
<tr>
<th>Mean Weight Loss (Range)</th>
<th>17.2 kg (0–47.3 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean % Weight Loss</td>
<td>15.9% Weight Loss</td>
</tr>
<tr>
<td>Mean % Excess Weight Loss</td>
<td>40.1% EWL</td>
</tr>
</tbody>
</table>

Adjustments

Downward adjustments

Six patients were intolerant to the balloon beyond 1 week. Three of them agreed to volume adjustment and were able to complete the 12 month treatment period. The other three patients refused downward adjustment and the balloons were extracted prematurely at 3 ½ weeks, 2 months and 6 ½ months, respectively (Table 2). The mean of additional weight loss after downward adjustment was 12.7 kg (Table 4).

Upward adjustments

Fifteen patients underwent upward adjustments as weight loss reached a plateau. All adjustments were successful and resulted in a further mean weight loss of 8.2 kg. The extra weight loss that resulted after adjustment ranged from zero to 25 kg (0, 1, 3.2, 4, 4, 5, 5.9, 6, 7, 8, 11, 12, 13, 18, 25 kg).

Complications

Complications included intolerance in six patients, of which three agreed to downward adjustment resulting in alleviation of intolerance – the other three patients had their balloons removed and remained asymptomatic post extraction. During one adjustment procedure the valve disconnected requiring a balloon replacement – the patient continued with the new balloon to the end of the 12 month implantation period. There was one gastric ulceration at 5 months which required endoscopic therapy for bleeding and balloon removal. The patient was discharged post extraction of the balloon on pantoprazole 40 mg BID and remained asymptomatic with confirmed healing of the ulcer on subsequent endoscopy. There were no deflations or perforations.

Discussion

Having previous experience with the original Spatz Adjustable balloon from 2010 to 2011 in over 180 procedures in our two institutions, it is our opinion that the original Spatz had a lengthier and more complicated implantation and extraction procedures, whereas the procedures for Spatz3 are less complicated with fewer steps. The weight loss results are comparable with respect to % EWL (45% and 48% in Spatz and 40.7% EWL in Spatz3). The complication rate reported with the original Spatz was 4.1% with a deflation rate of 4% which has diminished with Spatz3- (1.3% complication rate and no deflations)13,14. We can conclude that the Spatz3 balloon is easier to use and has the same efficacy with a very low side effect profile. We report our experience with the Spatz3 ABS in 77 consecutive patients. In the present experience, other than intolerance in six patients and one bleeding gastric ulcer requiring endotherapy and balloon removal, there were no other complications. Three of the 6 intolerant patients agreed to downward adjustments which alleviated their symptoms. The additional mean weight loss of 12.7 kg is similar to the previously reported 13.2 kg lost after downward adjustment15.

Our experience with upward adjustments confirms earlier reports of added weight loss after adjustment. We report a mean additional weight loss after upward adjustment of 8.2 kg which is similar to the 9.4 kg reported in the previous Spatz publication15. Adjustment was an effective tool for our intolerant patients as well as for our patients with weight loss plateau who were willing to undergo an extra procedure. In the Czech Republic, all of our patients except one underwent upward adjustment whereas in the UK only 12% of our patients opted for upward adjustment. We believe this is as a result of the long distance travel for our UK patients from all over the UK to the UK center in Manchester.

Table 4. Adjustments.

<table>
<thead>
<tr>
<th></th>
<th>Patients</th>
<th>Time (range)</th>
<th>Volume (range)</th>
<th>Additional Wt loss post adjustment (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWNWARD ADJUSTMENT</td>
<td>3</td>
<td>3.7 weeks (2–6)</td>
<td>133 ml (100–150)</td>
<td>12.7 kg (12.5–12.8)</td>
</tr>
<tr>
<td>UPWARD ADJUSTMENT</td>
<td>15</td>
<td>4.1 months (2–11)</td>
<td>320 ml (200–500)</td>
<td>8.2 kg (0–25)</td>
</tr>
</tbody>
</table>
Based on our experience, the Spatz3 Adjustable Balloon System is an effective procedure for weight reduction, without mortality, and very limited morbidity.

Data availability

F1000Research: Dataset 1. Data on safety and efficacy of Spatz3 adjustable balloons, 10.5256/f1000research.5099.d34850

Author contributions

Dr Machytka and Dr Mason submitted the data that was analyzed and presented in the paper. Dr Brooks reviewed the final manuscript and made suggestions prior to submission by Dr Machytka. All authors agreed to the final content of the manuscript.

Competing interests

Dr Jeffrey Brooks is the CEO of Spatz FGIA Inc which is the manufacturer of the Spatz balloon. Dr Evzen Machytka and Dr John Mason have no conflict of interest to report.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

 PubMed Abstract | Publisher Full Text
 PubMed Abstract | Publisher Full Text
 PubMed Abstract
 PubMed Abstract | Publisher Full Text
 PubMed Abstract
 PubMed Abstract | Publisher Full Text
 PubMed Abstract | Publisher Full Text | Free Full Text
 PubMed Abstract | Publisher Full Text
 PubMed Abstract | Publisher Full Text
 Data Source
Open Peer Review

Current Referee Status:

Version 1

Referee Report 20 March 2015

doi:10.5256/f1000research.5437.r7945

Jamie Ponce
Hamilton Medical Center, Dalton, GA, USA

Overall good series with an adjustable intragastric balloon.
1. In the Methods, need to describe the initial fluid volume
2. Describe the parameters used to define “intolerance” as well as “weight plateau” for removing or adding fluid.
3. Need to present weight loss at 6 month interval as well to compare with 6-month balloons data, also will tell us how much effect the balloon has on the 2nd 6-month period.
4. May need to explain if there were similar features on pts requiring upward adjustments (i.e., height, stomach size, etc.)
5. Discussion needs to include comparative analysis with other balloons data, or mention systematic review

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Competing Interests: No competing interests were disclosed.

Referee Report 24 November 2014

doi:10.5256/f1000research.5437.r6789

Marko Nikolic
Department of Gastroenterology and Hepatology, University Hospital Center, Zagreb, Croatia

The authors have analyzed the efficacy of adjustable intragastric balloon in mid-term weight loss. There are few questions which need to be raised.
1. How many patients have achieved success after 6 and 12 months of treatment (defined as EXWL > 20%).
2. It would be of reader’s interest to know EXWL in first 6 months and in the next six months. Then we could easily compare the results with BIB.

3. How many patients experienced nausea, dyspeptic symptoms etc?

4. In the discussion section, please compare the efficacy and side effects between Spatz1 and Spatz3. Additionally, compare Spatz3 with BIB (since BIB is the gold standard of treatment with intragastric balloons).

5. Please mention how long did it take to perform additional adjustments, how many additional visits were necessary and what were the complications of all adjustments.

6. All the above required changes should be presented in new tables or figures, since the current ones are too small and hard to follow.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Competing Interests: No competing interests were disclosed.