SOFTWARE TOOL ARTICLE

ImageM: a user-friendly interface for the processing of multi-dimensional images with Matlab [version 1; peer review: 1 approved with reservations]

David Legland1,2, Marie-Françoise Devaux1

1INRAE, UR BIA, F-44316 Nantes, France
2INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France

Abstract
Modern imaging devices provide a wealth of data often organized as images with many dimensions, such as 2D/3D, time and channel. Matlab is an efficient software solution for image processing, but it lacks many features facilitating the interactive interpretation of image data, such as a user-friendly image visualization, or the management of image meta-data (e.g. spatial calibration), thus limiting its application to bio-image analysis. The ImageM application proposes an integrated user interface that facilitates the processing and the analysis of multi-dimensional images within the Matlab environment. It provides a user-friendly visualization of multi-dimensional images, a collection of image processing algorithms and methods for analysis of images, the management of spatial calibration, and facilities for the analysis of multi-variate images. ImageM can also be run on the open source alternative software to Matlab, Octave. ImageM is freely distributed on GitHub: https://github.com/mattools/ImageM.

Keywords
image processing, matlab, multivariate image analysis, segmentation, interactive segmentation

This article is included in the NEUBIAS - the Bioimage Analysts Network gateway.
Corresponding author: David Legland (david.legland@inrae.fr)

Author roles: **Legland D**: Conceptualization, Methodology, Software, Writing – Original Draft Preparation; **Devaux MF**: Conceptualization, Investigation, Writing – Original Draft Preparation

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2021 Legland D and Devaux MF. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Legland D and Devaux MF. ImageM: a user-friendly interface for the processing of multi-dimensional images with Matlab [version 1; peer review: 1 approved with reservations] F1000Research 2021, 10:333 https://doi.org/10.12688/f1000research.51732.1

First published: 30 Apr 2021, 10:333 https://doi.org/10.12688/f1000research.51732.1
Introduction
Modern imaging devices provide a wealth of data often organized as images with many dimensions, for instance 2D/3D, time and channel. This leads to new challenges in the exploration, visualization and processing of multi-dimensional data. In particular, multi-spectral images require the application of methods at the intersection of spectroscopy and image processing.

Matlab (The Mathworks, Natick, MA), is an efficient software solution for image and signal processing that provides native support for multi-dimensional arrays, a large number of image processing methods, and a great facility for adding custom developments. However, it lacks many features for facilitating the interactive interpretation of image data, such as a user-friendly visualization of multidimensional images, or the management of image meta-data (e.g. spatial calibration), thus limiting its application to bio-image analysis.

The ImageJ/Fiji software (Schneider et al., 2012) is an alternative that provides an intuitive graphical user interface for image exploration, and many image processing functions that take into account spatial or channel calibration. The basic functionalities can be extended by a large collection of plugins. The integration of custom developments is possible via macros or plugins, but this often requires advanced programming skills.

The ImageM software aims at providing a user-friendly interface for the interactive exploration, processing and analysis of multi-dimensional imaging data within the Matlab environment, while taking into account meta-data and facilitating the integration with custom algorithm developments.

Methods
Implementation
ImageM strongly relies on Matlab’s Object-Oriented Programming. The core feature is an “Image” class that handles arrays up to five dimensions, corresponding to three spatial dimensions, the channels, and the time. It also encapsulates image meta-data such as spatial calibration, image name, or channel names.

The user interface relies on various image viewers adapted to the type (grayscale, color, label, multivariate) and the dimensionality of the image (Figure 1a). Interactive tools allow for quick image exploration, for example histograms, line profiles and 3D visualization. The architecture was kept modular to facilitate the inclusion of new features.

Figure 1. Result of a typical image processing workflow with ImageM. Original 3D image is visualized via adapted viewer (a). Image processing operators are applied (b), using contextual dialogs (c). Segmentation results are represented by label images (d,g). Analysis of the image results in table frame (f). Menu actions are transcripted into runnable Matlab commands (e). Original image courtesy of K. Belcram (Moukhtar et al., 2019).
Operation
To have the whole functionalities, Matlab (v2020a) is required, as well as the Image Processing and the Statistics toolboxes. The Gui Layout Toolbox (Sampson, 2021) is required to benefit from flexible image viewers. ImageM runs on a typical workstation. The application is launched by typing “ImageM” from the command line.

Menus provide quick access to common image processing operators, organized in a way to make them easily discoverable by a non-expert user. When necessary, intuitive dialogs allow for setting up parameters. Preview of the results facilitates the choice of relevant settings. Region of interest may be defined interactively to perform interactive measurements.

To facilitate usage during scripting and integration with custom developments, images can be easily imported from and exported to the workspace. Applying an operator results in a log entry that can be integrated into a script for quickly generating a workflow from the succession of operations.

Segmentation and analysis of regions
ImageM integrates a large family of image processing operators (linear filtering, mathematical morphology, segmentation). Intuitive dialogs allow tuning of parameters and preview of the result, facilitating the choice of relevant settings (Figure 1c). The type of the result image is automatically inferred to provide the most adequate visualization (Figure 1d and e).

Segmentation algorithms result in binary or label images that can be used for quantitative analysis of regions. The spatial calibration of images is considered when available. Features can be visualized as geometric overlays on the image or exported to data tables (Figure 1f).

Multivariate image analysis
Multi-channel images or microscopy images contain pixels represented of several values. Multivariate image analysis provides a convenient formalism to analyze such images by taking account both the spatial and the spectral dimensions (Geladi & Grahn, 2006). ImageM can convert multi-variate images into data tables, allowing their exploration through multi-variate analysis tools such as Principal Component Analysis or k-means clustering (Figure 2). Resulting tables can be easily back-converted to images to facilitate the visual interpretation.

Octave
ImageM can also run within the open-source platform, Octave, after some modification of the code (see Extended data (Legland & Devaux, 2021)).

Use case
We present here a use case describing image segmentation and region analysis of the 3D image presented in Figure 1. The Extended data (Legland & Devaux, 2021) contains the sample files, and more detailed use cases.

- First, run the application by typing “ImageM” from Matlab command line.
- In the menu, select “File->Open Image …” and choose the file “arabidopsis-embryo.tif”. This opens an image viewer for the 3D image.

Figure 2. Multivariate image analysis of a macrofluorescence image. Left panel: original multivariate image (from Devaux, 2008). Middle panel: application of K-means clustering on principal components. Right panel: color representation of k-means classes.
- Reduce the noise in the image, by selecting “Process->Gaussian Filter …”. This opens a dialog.

- Choose value 1 for each of the “sigma” values, and click “OK”. The filtered image appears in a new viewer.

- Perform 3D segmentation of the cells. Select menu entry “Process->Extended Min Watershed …”. Choose a basin dynamic equal to 6, the “C6” connectivity, and result type as “basins”. This results in a new 3D label image in a new viewer, where each label is displayed with a different color.

- Some regions do not correspond to cells. They can be removed manually. Select the menu “Process->Replace Value(s) …” and fill in with “1, 2, 28, 29” (values can be identified by moving the mouse cursor and inspecting the status bar).

- Morphometric features can be computed from 3D label images, by selecting the menu “Analyze->Analyze Regions …”. After choosing the features and clicking “OK”, the selected features appear in a new data table frame that can be saved as a text file or exported to the workspace.

- The 3D representation of the Figure 1g can be obtained by selecting the menu entry “View -> Show 3D isosurface”; choosing a “smoothing radius” value equal to 1 and checking the options “Reverse Z-axis” and “Rotate Ox”.

Summary
The ImageM application proposes a convenient user interface for the visualization and exploration of multi-dimensional images within Matlab. It also provides basic support for regions of interests, the management of data tables. Its modular architecture should facilitate the future incorporation of new functionalities. The current work focuses on a better management of regions of interest, and on the inclusion of user plugins.

Software availability
Packaged application available for direction download from: https://www.mathworks.com/matlabcentral/fileexchange/45847-imagem

Source code available from: https://github.com/mattools/ImageM

License: BSD 2-Clause “Simplified” License

Data availability
Underlying data
All data underlying the results are available as part of the article and no additional source data are required.

Extended data

This project contains the following extended data:

- User manual
- Octave compatibility notice
- Two detailed use cases
- Images used in use cases

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
Acknowledgements
This publication was supported by COST Action NEUBIAS (CA15124), funded by COST (European Cooperation in Science and Technology).

References

Open Peer Review

Current Peer Review Status: ?

Version 1

Reviewer Report 23 July 2021

https://doi.org/10.5256/f1000research.54926.r89355

© 2021 Jose J et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

John Anthony Jose
Electronics and Communications Engineering Department, De La Salle University, Manila, Philippines

Janos Lance Tiberio
De La Salle University Manila, Manila, Philippines

The authors are able to clearly explain the problem and contribution of the paper. However, the method of how they validated their contribution is quite limited. Specifically, they mentioned that the problem they would like to solve is that the existing approaches on visualizing and exploring multi-dimensional images lacks features in interactive interpretation. Concretely, it is about the lack of user-friendly visualization and management of image meta-data. However, their results didn't provide any validation that their contribution is has better user-friendly approaches compared to the existing one.

The authors can improve on their article by concretely discussing on how their results was able to directly address the problem that they are trying to solve. Additionally, it will be helpful if they provide comparisons with existing software for multi-dimensional image analysis.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computer Vision, Image Processing

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com