SOFTWARE TOOL ARTICLE

Designing and developing an app to perform Hofstee cut-off calculations [version 1; peer review: 1 approved with reservations]

Ken Masters¹, Nadia Al-Wardy²

¹Medical Education and Informatics, Sultan Qaboos University, Al-Khoud, 0123, Oman
²Biochemistry, Sultan Qaboos University, Al-Khoud, 0123, Oman

Abstract
Determining a Hofstee cut-off point in medical education student assessment is problematic: traditional methods can be time-consuming, inaccurate, and inflexible. To counter this, we developed a simple Android app that receives raw, unsorted student assessment data in .csv format, allows for multiple judges' inputs, mean or median inputs, calculates the Hofstee cut-off mathematically, and outputs the results with other guiding information. The app contains a detailed description of its functionality.

Keywords
Hofstee, Angoff, Assessment, Standard setting, Android, MARS

Open Peer Review

Invited Reviewers
1

version 1
07 Jun 2021

1. Adam E. Wyse, Renaissance, Arden Hills, USA

Any reports and responses or comments on the article can be found at the end of the article.

Corresponding author: Ken Masters (itmeded@gmail.com)

Author roles: Masters K: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Al-Wardy N: Conceptualization, Data Curation, Formal Analysis, Methodology, Validation, Visualization, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2021 Masters K and Al-Wardy N. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Masters K and Al-Wardy N. Designing and developing an app to perform Hofstee cut-off calculations [version 1; peer review: 1 approved with reservations] F1000Research 2021, 10:450 https://doi.org/10.12688/f1000research.53096.1

First published: 07 Jun 2021, 10:450 https://doi.org/10.12688/f1000research.53096.1
Introduction
Determining the pass/fail score in assessments
In medical education assessment, determining the student pass/fail mark is a contentious issue. A range of methods can be used to determine this point and are covered in several other papers. In summary, however, most methods fall into three categories: norm-referenced (determined by the performance of the student group), criterion-referenced (pre-determined as an absolute cut-off point) and compromise methods (a compromise between the previous two methods is found).

Hofstee method
The Hofstee Method is a compromise method that follows four steps, and uses four variables or parameters (explained in more detail below) to determine the cut-off point.

Step 1: Evaluation by judges
In Step 1, judges who are qualified to assess the test make an independent judgement about the values of the following four parameters:

- c_{min}: The minimum cut-off score (i.e. the score that the judge feels would be the lowest possible score that would be considered as a pass/fail score).
- c_{max}: The maximum cut-off score (i.e. the score that the judge feels would be the highest possible score that would be considered as a pass/fail score).
- f_{min}: The lowest percentage of students that the judge feels should fail this test.
- f_{max}: The highest percentage of students that the judge feels should fail this test.

The four parameters are often indicated with different abbreviations; in this paper, we use $c_{\text{min}}, c_{\text{max}}, f_{\text{min}}$ and f_{max} as is used elsewhere. We should further note that judges will generally use the Angoff or similar method to determine these.

Step 2: Determining the arithmetic means
Based upon the independent judgements, the arithmetic mean of each parameter is calculated. (Some researchers, e.g. Norcini, have suggested that medians may also be used).

Step 3: Plot on a graph
After the test has been administered to the students, a graph (Figure 1) is then drawn, plotting the cumulative percentage of students against the scores obtained, and the four parameters.

Step 4: Determining cut-off
The pass/fail cut-off point is then determined by drawing line AB and finding the intersect with the cumulative line. In the Figure 1 example, the cut-off is determined to be slightly less than 38%.

Practical problems with using the Hofstee method
Apart from the fact that any cut-off method can be debated, there are practical problems associated with this method, and these include:

1. The time taken to accurately draw the chart, and all the associated lines.
2. Reading the cut-off point from an imperfect drawing, rather than determining it mathematically.
3. One might wish to allow for some flexibility, and test other values for the parameters. On a hand-drawn chart, this is time-consuming and untidy, to the point of being impossible.
Non-paper solutions

Hofstee produced a mathematical solution, but it requires sorting and frequency pre-calculation and data inspection, and the mathematics involved is not rudimentary (requiring seven steps). Van Der Vleuten developed a useful one for SPSS, but it uses expensive licensed software.

An Excel template designed by one of the authors (KM) already exists, and plotting the chart on Excel is certainly an improvement over the hand-drawn chart. However, it still requires the data to be pre-sorted and also requires the generation of the cumulative data. In addition, although the chart is drawn more accurately than by hand, it still requires a manual reading of the intersection point.

An app

A search in both the Apple and Android app stores (conducted in January 2020 and again in March 2020) confirmed that there was no such app in either of the stores. To meet this need for a simple and accurate method of determining the Hofstee cut-off, we designed and developed a simple Android app. The app automatically sorts the data, draws the chart, and calculates the cut-off point algebraically. The result is a process that is faster and more accurate than the other mentioned methods.

For usability and evaluation, the app was designed according to the relevant principles laid out in the Mobile App Rating Scale (MARS). The overall MARS scale is broad, and so does have a few weaknesses when applied to this type of app (e.g. it rates the entertainment value of the app), but it is still a useful guide. In addition, the app is available free of charge, and with no advertisements.

Methods

Implementation

The app, HofsteeCalc, was developed using MIT App Inventor Version 2 (builds nb182 through to nb186a). MIT App Inventor uses its own visual, block-based programming interface to develop Android and iOS apps. In addition to the internal code, the app uses three external sets of libraries and routines for browsing to and selecting the data file, sorting the data, and charting the data. No user or device information is collected. The app is optimised for Android 2.1 and higher, API level 28, and requires permission to read from and store data to the device.

Operation

See Figure 2 for workflow chart.
The app automatically creates a data folder and has a test file that the user can use for testing before they insert their data.

The app allows each judge’s individual parameters to be entered (up to a maximum of 10 judges), and then calculates the means, standard deviations, and medians (Figure 3a). The parameters are automatically stored if required and are available the next times the app runs. Alternately, the final means or medians can be entered directly into the main screen (Figure 3b).

For data input, the student data need to be in a single-column standard.csv file. If the.csv file contains more than one column of data, only the first column will be read. The app automatically sorts the data, so these do not have to be pre-sorted by the user.

When the charts are to be drawn, the user can view either the chart of the whole data set (see Figure 3b; Draw Full Chart), or a detailed section (covering data which is within and close to the range of the parameters (see Figure 3b; Draw Detailed Chart). With pinching, users can zoom in and out of the charts.

As the focus of the app is a functional tool, it has a simple user interface, and includes a ‘Help’ screen that explains in detail how it is to be used. Although the app assumes a knowledge of the Hofstee method, it supplies additional references for the user. Allowing for personal preferences, it permits the user to change some user-interface colours to suit individual needs.

An ‘Options’ screen allows changing of the user-interface colour scheme of buttons, to suit the individual user’s needs.

Central algorithm to algebraically determine the Hofstee cut-off

In the Hofstee chart, we know the x_1y_1 and x_2y_2 coordinates of line AB (Figure 1). However, because the cumulative score line does not have an algebraic formula, calculating the intersection between this straight line and the cumulative line is
not possible (using ‘best fit’ or ‘nearest neighbour’ might be possible but will not give 100% accuracy). It is for this reason that current users of the Hofstee method read the point manually from hand-drawn charts.

The data, however, are x_1y_1 and x_2y_2 coordinates of straight lines, and these coordinates are stored in an array (or list). So, the algebraic algorithm for determining the cut-off can be expressed in the following pseudo-code:

For each straight line in the array of lines forming the cumulative line

Read the x_1y_1 and x_2y_2 coordinates of that line

Algebraically determine the intersection point (x_i) of this straight line and line AB

IF $x_1 < x_i < x_2$ [there is no need to test the y coordinate]

THEN x_i is the cut-off point

(If the cut-off (x_i) is a data point, then two lines would meet this condition, but that is no matter, as the point is identical.)

Readers may recognise that, because the cut-off point is determined algebraically, there is no need to draw the chart for the calculation. The chart, however, has been included in the app because most users are used to it, and also because they may wish to make manual adjustments to the parameters based on the visual reading of the data.
App completion
After various early test versions, Version 1.0 of the app was completed in February 2021, and uploaded into the Google Play Store at: https://play.google.com/store/apps/details?id=appinventor.ai_itmeded.HofsteeCalc. Since then, small updates have been performed, and the app is currently on Ver. 1.1.

App description and functionality
Conforming to the requirements laid out in the Introduction above, the app is available free of charge, with no advertisements. It does not require access to the internet, and it does not collect, store, or transmit any personal information about the user or the device.

Alpha testing
The app was alpha tested on various real and hypothetical, sorted and unsorted datasets (see Underlying data), with up to 1,000 items, and consistently returned accurate results. For example, for the dataset used in Figure 1, the app calculated the cut-off at 37.62%, rather than “slightly less than 38%” (See Figure 3b).

The time to draw the chart and determine the cut-off from a dataset of unsorted, 1,000 randomly-generated numbers (MS-Excel 2019 RANDBETWEEN(1,100)), was approximately 2 seconds (Samsung S8, Model SM-G955FD, Android Ver. 9, Build PPR1.180610.011.G955FXXs6DTA1).

Mobile App Rating Scale (MARS)
Using the Mobile App Rating Scale (MARS), both authors independently measured the app against the scale, and arrived at a score of 4.07 and 3.88, respectively. As detailed above, this less-than-ideal score was expected, as the MARS includes items not entirely appropriate to such an app.

Use case
For use cases, anonymised data sets are available in Underlying data.

An example of a use case utilised the data in the sheet HofsteeCalcRealDataClass01.csv.

The data set has 181 items, and the item values range from 43 to 97. The data set is unsorted.

The input parameters were determined as shown in Table 1.

Based on this use case, Figure 4a shows the input parameters. Figure 4b shows the resultant ‘Detailed chart’, the Hofstee cut-off percentage (53.80), and the largest data gaps in the vicinity of the Hofstee cut-off percentage.

Comments
This paper has described the successful design and development of a free, advertisement-free, Android app to calculate the Hofstee cut-off. The app meets basic design principles as established in the MARS scale, and alpha- and beta-testing has shown the app to be accurate and fast. The app is available in the Google Play app store (see Software availability).

Full usability and ease of use will be tested in the future through more rigorous, wide-spread testing among medical educators.

<table>
<thead>
<tr>
<th>Rater</th>
<th>c_min</th>
<th>c_max</th>
<th>f_min</th>
<th>f_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>60</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>56</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>52</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>54</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>53</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>
Conclusions

When educating future health professionals, determining fair pass/fail cut-off points is crucial. The time taken to perform such procedures, however, adds to medical educators’ already over-burdened schedules, and competes with a range of other demands in this schedule, so it is inevitable that short-cuts and errors will occur. This research has traced the design and development of a tool that can both save time and improve accuracy when determining the Hofstee cut-off.

Data availability

Underlying data

This project contains the following underlying data:

- RawDataForTesting.csv (data set that is built into the app’s assets).
- TestingForAppData.csv (data set used to generate Figure 1 and Figure 3b).
- HofsteeCalcRealDataClass01.csv (data set available for testing).
- HofsteeCalcRealDataClass02.csv (data set available for testing).
- HofsteeCalcRealDataClass03.csv (data set available for testing).
- HofsteeCalcRealDataClass04.csv (data set available for testing).

Data are available under the terms of the Creative Commons Attribution 4.0 International licenses (CC-BY 4.0).
Software availability
HofsteeCalc

 Archived source code at time of publication: https://doi.org/10.5281/zenodo.4633140.

 Licence: Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgments
The authors would like to acknowledge Prof. Cees van der Vleuten, Maastricht University, for sending us a copy of Hofstee 1997.

References
Open Peer Review

Current Peer Review Status: ?

Version 1

Reviewer Report 14 July 2021

https://doi.org/10.5256/f1000research.56446.r86927

© 2021 Wyse A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Adam E. Wyse

Renaissance, Arden Hills, MN, USA

I appreciate the opportunity to review the article “Designing and developing an app to perform Hofstee cut-off calculations” by Ken Masters and Nadia Al-Wardy. I support the idea of developing simple software tools that people can use to perform standard setting. This is an area of definite need, especially in medical education contexts. I am unaware of a widely available software application to perform the Hofstee method. In most cases that I have seen the Hofstee method used, the people leading the standard setting use Excel or another statistical software package, such as R, to perform the calculations and figure out the cut score. In this sense, the app offered by Masters and Al-Wardy may be beneficial to people who want to perform the Hofstee method and do not have already developed software to perform the Hofstee method. I also liked how the authors provided screen shots of how the app works and several figures and examples throughout the article.

I do have several suggestions for changes to the article and app. First, the authors suggest in the section Step 1: Evaluation of Judges that “We should further note that judges will generally use the Angoff or similar method to determine these.” This statement is not completely accurate. Wyse (2020) discusses several different methods for performing the Hofstee method. One strategy is to figure out the minimum and maximum cut scores from the panel of judges using the Angoff (1971) method or another test-centered method, such as the Bookmark method (Lewis, Mitzel, & Green, 1996). However, this method is not the most common strategy I have seen used to collect these data. It is more common to directly ask panellists to answer four open-ended questions to solicit the data needed to estimate the Hofstee cut score. In addition, it should be noted that even if the Angoff method is used with the Hofstee method that the data on the lowest and high percentages of students that a judge feels should fail the test (which is sometimes alternatively phrased in terms of the highest and lowest students that should pass the test) need to be directly collected from individual judges.

It should also be clear that the description of using the Angoff method to provide data to calculate the cut scores appears to be inconsistent with how the app works in Figure 3. In Figure 3, the authors show a screen with input for each rater. It is not possible to use the Angoff method to
provide the multiple limiter input data shown on this screen. The app could be improved if it allowed for data from an Angoff standard setting or other test-centered method to be input. This input could be either entering the minimum and maximum cut scores from a test-centered standard setting method or each judge's cut score from such a standard setting. It would also be beneficial if the app allowed for an option to input the lowest and highest passing rates and a corresponding graph instead of failure rates. I have commonly seen the method used with passing rates instead of failure rates. Judges sometimes find it easier to conceptualize and use pass rates as many credentialing and licensing organizations as well as accrediting bodies use passing rates instead of failure rates. Finally, it appears that the app requires that cut scores needs to be expressed as a percentage correct. It would be useful if the app also allowed for raw scores to be input as an option as I have seen raw scores used in many different standard settings.

Another area for potential improvement is the example shown in Figure 1. The example shown in Figure 1 appears to be based on data from a single judge. While it is possible to determine the Hofstee cut score for each individual judge, this is rarely done as the authors note in Step 2: Determining the arithmetic mean. The figure would be more beneficial if it focused on data from a group of judges as this is how the method is typically implemented.

There is a fourth practical and very real problem that occurs with the Hofstee method that is not described by the authors. Wyse and Babcock (2017) illustrate that the Hofstee method can produce undefined cut scores where the Hofstee line segment does not intersect with the failure rate or pass rate curve. This problem is a more serious issue than the three issues described by the authors as it implies that a cut score cannot be estimated. This issue should be mentioned in this section. Wyse and Babcock (2017) offer a solution for how to simply solve this issue, which involves extending the Hofsee line segment so that it intersects with the pass rate or failure rate curve. The other three practical issues described by the authors are easy to solve with Excel or other statistical software for technical savvy standard setters.

It should also be pointed out that the way the authors describe calculating the Hofstee cut score is different than the way that I typically think about doing it. The authors description of their method based on arrays is not easy to understand and follow, especially for many educators who may use the app. Wyse and Babcock (2017) offer an easy way to determine the cut scores for the Hofstee method that guarantees a solution even if the Hofstee line segment does not intersect the pass rate or failure rate curve. The authors should consider implementing this method in their app and provide a corresponding description in the article. The strategy involves finding the equation for the line that passes through the two points represented by the means of the data collected from the standard-setting judges that was described in earlier section of the article by the authors. Then, one inputs range of possible scores on the exam to figure out the estimated pass rate or failure rate (depending on whether pass rate or failure rate data are collected from judges) for every possible score on the exam. The last step is to compare the estimated pass rates or failure rates to the observed pass rates or failure rates on the exam. The score with the smallest absolute difference between the observed and estimated pass rates or failure rates is the cut score.

In summary, I think having a simple software app to perform Hofstee calculations is useful. However, the current version of the app does not cover all possible ways that the Hofstee method may be implemented which may limit its utility. If the authors made several changes based on the suggestions in this review, I think the app and article would have more utility and be easier to make sense for users.
References

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
Partly

Competing Interests: I have published several papers on the Hofstee method. One of these papers is referenced by the authors. It is important to me that my work and some of the ideas presented in those papers are accurately reflected in the article.

Reviewer Expertise: Psychometrics; Standard Setting; Measurement; Item Response Theory; Assessment

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 19 Jul 2021
Ken Masters, Sultan Qaboos University, Al-Khoud, Oman

We thank you for your detailed comments. We shall take them into account and address them in more detail when we have received responses from other reviewers.
Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com