Photophysical study and in vitro approach against *Leishmania panamensis* of dicloro-5,10,15,20-tetrakis(4-bromophenyl)porphyrinato Sn(IV) [version 2; peer review: 1 approved, 1 approved with reservations]

Fabián Espitia-Almeida¹⁻³, Carlos Díaz-Uribe¹, William Vallejo¹, Doris Gómez-Camargo², Arnold R. Romero Bohórquez⁴, Cristian Linares-Flores⁵

¹Grupo de Fotoquímica y Fotobiología, Universidad del Atlántico, Barranquilla, Colombia
²Grupo de Investigación UNIMOL, Universidad de Cartagena, Cartagena, Colombia
³Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
⁴Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal (CODEIM), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, Bucaramanga, Colombia
⁵Facultad de Ingeniería, Centro de Química Orgánica y Productos Naturales, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago de Chile, Chile

Abstract

Background: Photodynamic therapy activity against different biological systems has been reported for porphyrins. Porphyrin modifications through peripheral groups and/or by metal insertion inside the ring are main alternatives for the improvement of its photophysical properties. In this study, we synthesized and characterized 5,10,15,20-tetrakis(4-bromophenyl)porphyrin and the dicloro-5,10,15,20-tetrakis(4-bromophenyl)porphyrinato Sn(IV).

Methods: Metal-free porphyrin was synthesized using the Alder method, while the Sn(IV)-porphyrin complex was prepared by combining metal-free porphyrin with stannous chloride in DMF; the reaction yields were 47% and 64% respectively. Metal-free porphyrin was characterized by UV-Vis, FT-IR, ESI-mass spectrometry and ¹³C-NMR. Additionally, the Sn(IV)-porphyrin complex was characterized using UV-Vis and FT-IR. Cyclic voltammetry tests in four different solvents. The fluorescence quantum yield (Φ_f) was measured using fluorescein as a standard, the singlet oxygen quantum yield (Φ_D) was estimated using the standard 5,10,15,20-(tetraphenyl)porphyrin (H₂TPP) and the quencher of singlet oxygen 1,3-diphenylisobenzofuran (DPBF).

Results: UV-Vis assay showed typical Q and Soret bands for porphyrin
and its metallo-porphyrin complex. Compounds showed photoluminescence at the visible range of electromagnetic spectrum. The inclusion of the metal in the porphyrin core changed the Φ_f from 0.15 to 0.05 and the Φ_D increased from 0.55 to 0.59. Finally, the effect of the compounds on the viability of *L. panamensis* was evaluated by means of the MTT test. The results showed that both compounds decreased the viability of the parasite; this inhibitory activity was greater under light irradiation; the porphyrin compound had IC_{50} of 16.5 μM and the Sn(IV)-porphyrin complex had IC_{50} of 19.2 μM.

Conclusion: The compounds were synthesized efficiently, their characterization was carried out by different spectroscopy techniques and their own signals were evidenced for both structures, both compounds decreased the cell viability of *L. panamensis*.

Keywords
Photodynamic therapy, porphyrin, *Leishmania panamensis*, Photophysical study, in vitro, porphyrinato

Corresponding author: Fabián Espitia-Almeida (qcoespitiafabian@gmail.com)

Author roles: Espitia-Almeida F: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Diaz-Uribe C: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Vallejo W: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Gómez-Camargo D: Conceptualization, Funding Acquisition, Investigation, Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing; Romero Bohórquez AR: Formal Analysis, Investigation, Methodology, Project Administration; Linares-Flores C: Data Curation, Formal Analysis, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: F. Espitia would like to thank COLCIENCIAS (programa de apoyo Doctoral en la convocatoria 727 - 2015) for the grants. W. Vallejo thanks Universidad del Atlántico (Res. Rec. No. 000721 - 10/05/2017). C. Díaz and W. Vallejo thank to Universidad del Atlántico (RESOLUCIÓN 001025 de julio de 2018). C. Linares thanks CONICYT, REDES 150042 del Programa de Cooperación Internacional de CONICYT.

Copyright: © 2021 Espitia-Almeida F et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Espitia-Almeida F, Diaz-Uribe C, Vallejo W et al. Photophysical study and in vitro approach against *Leishmania panamensis* of dicloro-5,10,15,20-tetrakis(4-bromophenyl)porphyrinato Sn(IV) [version 2; peer review: 1 approved, 1 approved with reservations] F1000Research 2021, 10:379 https://doi.org/10.12688/f1000research.52433.2

First published: 12 May 2021, 10:379 https://doi.org/10.12688/f1000research.52433.1
Introduction

Porphyrins and metalloporphyrins are versatile macrocyclic organic compounds, from the structural viewpoint; the porphyrin main skeleton consists of four pyrrole rings bound through their alpha carbons (α-C) with four aldehydes. These structural characteristics confer on the porphyrins a variety of properties such as high conjugation, symmetry, and planarity. Additionally, they acquire the ability to complex with a large number of metals in their interior through the coordination of the four pyrrolic nitrogen atoms submerged in the molecule. The conjugated and aromatic structure of porphyrins allows interactions between π electrons and different metals, facilitating the binding to their coordination centers. Porphyrins have absorption and intense electronic emission at wavelengths greater than 400 nm, small energy for HOMO-LUMO transitions and the ability to adjust their optical redox properties. All these properties make porphyrins relevant macromolecules in several chemistry fields (e.g. material science, optics, catalysis, transformation and storage of energy, medicine, pharmacology). In recent years, porphyrins have emerged as important promising photosensitizers in photodynamic therapy (PDT); porphyrin and its derivatives demonstrate great efficacy as both antibacterial and antiviral agents against different species due to its exceptional photodynamic properties. Porphyrins have potential applications in biological sciences, therefore, it is pertinent to develop simple synthetic pathways that lead to compounds with unique physical and chemical characteristics.

Nowadays different strategies to improve porphyrin photodynamic properties have been applied: (a) structural modification of the base ring with the addition of a variety of substituents at meso position, and (b) the inclusion of metals into the porphyrin core. The photophysical properties of porphyrins and their metallic-derivatives are affected for both the peripherally and/or axial substituents and the central metal into porphyrin core. The porphyrins and their metallic-derivatives act efficiently as sensitizing agents and they have presented phototoxic activity against different pathogens, such as bacteria, fungi, viruses and parasites. Different porphyrinic photosensitizers have reported anti-leishmanicidal activity against *Leishmania tarentolae* in promastigote stage (ethyl and diethyl carbaporphyrin), against amastigotes of *L. panamensis*, and promastigotes of *L. major* and *L. braziliensis* (β-substituted porphyrinic systems). Improved pharmacological responses have been found when incorporating metals in the macrocycle, as reported by Gomes et al. when evaluating the activity against *L. amazonensis* against derivatives metalated with Bi (III) and Sb (IV) (IC50 of 93.8 μM and 52.4 μM respective). Another Zn (II) metalated porphyrin derivative evaluated against promastigotes of *L. braziliensis* reduced parasite viability with greater efficiency than the metal-free derivative. This type of modification alters the steric and electronic nature of porphyrins giving rise to new molecules that have specific and unique properties, and it also presents a promising alternative for modifying photophysical properties of the compounds: (a) quantum singlet oxygen performance, (b) the range of the therapeutic window, (c) photostability and (d) lipophilicity could be improved. Although, *5,10,15,20*-tetrakis(4-bromophenyl)-porphyrin (compound 1) and dicloro-5,10,15,20-tetrakis(4-bromophenyl) porphyrinato Sn (IV) (compound 2) are commercially available, the reports about its application as sensitizers in PDT are few. Therefore, in this study, we analyzed the photophysical behavior of (1) and (2) as regards their potential use in PDT against *Leishmania panamensis*.

REVISED Amendments from Version 1

We have made improvements in this version of the article thanks to the suggestions of reviewer 1, the changes made are described below.

1. **Methodology:** The information on the solubility of the compounds in dimethyl sulfoxide (DMSO) and the obtaining of the working concentration was expanded.

2. **Results:** We correct figures 1, 2 and 4, and tables 1 and 2.
 a). Figure 1. It was redrafted because the previous version had low resolution.
 b). Figure 2. Updated on the Y axis, the decimals had a comma (,) and it was necessary to replace the comma with a point (.) to homogenize the document.
 c). Figure 3. Updated on the Y axis, the axis label contained in parentheses (u. a.).
 d). Table 1. The lower absorption bands of the compounds (Bands Q) were added.
 e). Table 2. The number of decimal digits was updated before the quantities had three digits and now it has 2 decimal digits.

3. **Bibliographies:** Some bibliographies were updated, bibliographies of the year 2020 and 2021 were added.

Any further responses from the reviewers can be found at the end of the article.
Methods
Preparation and identification of compounds

All reagents and solvents were purchased from Sigma Aldrich. We prepare the porphyrin 5,10,15,20-tetrakis(4-bromophenyl) porphyrin (I) based on Adler’s method,36 introducing a small modification that consisted of leaving the reaction for 8 hours at room temperature and stirring in an open container, using the oxidative power of oxygen to convert more of the chlorin by-product into porphyrin. In summary, equimolar amounts of pyrrole and 4-bromobenzaldehyde were mixed in propionic acid for 8 hours at ambient temperature under an atmosphere of air. Dichloro-5,10,15,20-tetrakis(4-bromophenyl) porphyrinato Sn (IV) (2) was synthesized by porphyrin precipitation in metal chloride solicitation (Figure 1). The formation of the final products was followed by thin layer chromatography on aluminum foil UV254 TLC, the mobile phase was petroleum ether-ethyl acetate (2:1). The compounds were characterized using 13C NMR spectra (Bruker AC-400 spectrometer); the 13C NMR chemical shifts are reported as ppm (δ), relative to CDCl$_3$ (signal located at 7.29 ppm). Infrared spectrum was measured on the equipment ECO-ART alpha Bruker FTIR spectrometer. To perform UV-Vis spectrum (using a UV-2401PC UV-Vis spectrophotometer), we dissolved 2.0\times10$^{-3}$ g of each compound in ethyl acetate, and finally, we obtained the mass spectrum by dissolving the compound in methanol (using ESI-LC-MS/MS ion Trap amaZon, Bruker spectrometer). Furthermore, we measured fluorescence quantum yield (using a PTI um 40 fluorimeter) and singlet oxygen quantum yield,37 and electro-chemical characterization was performed in four different dissolvents (Dimethylformamide-DMF, dichloromethane -DCM, dimethylsulfoxide-DMSO, tetrahydrofuran-THF) containing 1.0\times10$^{-3}$ M tetrabutylammonium perchlorate ((C$_4$H$_9$)$_4$N(ClO$_4$), Aldrich 98% purity) as a supporting electrolyte for all electrochemical measurements.

Compound (I) was prepared by mixing 10 mmol pyrrole and 10 mmol 4-bromobenzaldehyde in 80 ml propionic acid for 8 hours at ambient temperature in an open container. The product was extracted from the reaction medium by adding 60 mL cold methanol and filtering by gravity, the filtrate was dried at room temperature, obtaining 1.4136 g of a purple solid that was finally purified using column chromatography (mobile phase; ether-ethyl acetate 20:2). Yield: 47.28%; melting point $> 300^\circ$C; UV-Vis (ethyl acetate) 414, 512, 546, 591, 645; FT-IR (cm$^{-1}$): N-H (3350), C=C (1470.28), C=N (1088.22), C-N (964.28); 13C NMR (CDCl$_3$, 400 MHz): δ = 118.86 (Ar), δ = 122.92 (Ar), δ = 130.22 (β-py), δ = 131.95 (Ar), δ = 135.95 (Ar ipso), δ = 140.91 (Ar-Br); (M+H) m/z = 930.9. These results concur with previous reports for this compound.37,38

Compound (2) was prepared by mixing 0.5478 mmol of (I) with 2.2164 mmol SnCl$_2$·2H$_2$O in DMF (80 mL) for 4 hours at ambient temperature, and by stirring. After that, we added cold water and TBrPP-Sn (IV) precipitated; this solid was washed and dried at ambient temperature. The compound was purified by column chromatography (mobile phase; petroleum ether-ethyl acetate 5:1). Yield: 64.4%; melting point $> 300^\circ$C; UV-Vis: 426, 560, 600. These results concur with previous reports for this compound.37,39

Photophysical properties

Fluorescence quantum yield (ϕ_f) was determined by the comparative method in a PTI um 40 fluorimeter. Using as a standard fluorescein dissolved in water, porphyrin (I) and metalloporphyrin (2) dissolved in ethyl acetate. All fluorescences were determined taking as excitation wavelength the maximum of the Soret band, using a 2 nm slit and a 420-750 nm scan. The fluorescence quantum yield was calculated with the following $\text{eq. 1.}^{37,40,41}$

$$\phi_f = \frac{F_x \times A_x \times \eta_x^2}{F_{ext} \times A_{ext} \times \eta_{ext}^2}$$

(Fig.1)

F_x and F_{ext} are the areas under the fluorescence emission curve of compounds (1), (2) and the standard. A_x and A are sample absorbances and standard at the excitation wavelength. η x and η are the respective refractive indices of the solvents (ethyl acetate; η = 1.3724, water; η = 1.33336).

![Figure 1. Synthesis route of compounds (1) and (2).](image-url)
Singlet oxygen quantum yield (Φ_λ) of (1) and (2) was performed by the graphical method, using 1,3-diphenylisobenzofuran (DPDF) as singlet oxygen scavenger, and singlet oxygen generator standard 5,11,15,20-(tetraphenyl) porphyrin (H2TPP). The tests were carried out by preparing a 1×10^{-9} M solution of each compound in DMF in triplicate and calculated with eq. 2.37,40,41

$$\Phi_{\Delta \text{standard}} = \frac{W}{W_{\text{standard}}}$$

Where: $\Phi_{\Delta \text{standard}}$ is the singlet oxygen quantum yield of the H2TPP standard in DMF (0.64). W and W_{standard} are the slopes of the degradation curves of the DPDF.

Electrochemical characterization

Cyclic voltammetry (CV) data were recorded using a single-compartment electrochemical cell with a maximum electrolyte volume of 10 mL. A CH Instruments (Model 600E) Electrochemical Analyzer was used for the electrochemical measurements. The working electrode was a glassy carbon 3 mm in diameter on Teflon R (CH Instruments). The reference electrode used was an Ag+/Ag electrode on Teflon R; we used a solution 1.0 M AgNO_3 in electrolyte support; the auxiliary electrode was a platinum of 99.99% from CH Instruments. The electrochemical characterization was carried out using cyclic voltammetry and linear voltammetry. The peak current intensity $i_p[A]$, in cyclic voltammetry, is given by the Randles-Sevcik Eq.3:32

$$i_p = (2.69 \times 10^5)n^2A_D^{1/2}C_0^{1/2}$$

where n is the number of electrons in the redox reaction, $A[cm^2]$ is the area of the working electrode, $D[cm^2s^{-1}]$ is the diffusion coefficient for the electroactive species, $v[Vs^{-1}]$ is the scan rate, and $C[molcm^{-3}]$ is the concentration of the electroactive species in the electrode. The anodic and cathodic peak currents are equal, and the ratio $i_{p,a}/i_{p,c}$ is 1.0. The half-wave potential, $E_{1/2}$, is midway between the anodic and cathodic peak potentials, Eq. 4.

$$E_{1/2} = \frac{E_{p,a} + E_{p,c}}{2}$$

Biological assay

Leishmania panamensis (UA140) was used in *in vitro* tests for the evaluation of the leishmanicidal potential of the compounds (1) and (2). Leishmanicidal activity was determined as the ability of the compounds to decrease the viability of the parasite, for this the MTT method is widely used in the literature (MTT Assay Protocols, Thermo Fisher Scientific). Conditions were previously standardized by our working group.37,43-45

Parasite culture and viability using MTT assay

Leishmania panamensis (UA140) were cultured in RPMI-1640 supplemented with 10% fetal bovine serum, 1% glutamine and 1% antibiotics (200 U penicillin/200 μg Amikacin) under incubation conditions 5% CO_2.37,45 The metacyclic promastigotes in the infectious stage were isolated from stationary cultures. The parasite viability was estimated by MTT assay.37,43-45 Anti-leishmanicidal activity was evaluated at different concentrations (1, 10, 50, 100 and 200 μM) of compound and positive control (Glucantime), test compounds and positive control were dissolved in dimethyl sulfoxide (DMSO), working concentrations were obtained by adding 10 μL of compound in a final volume of 200 μL in each well of the microplate, under visible-light irradiation, at incubation times of 24, 48 and 72 hours.37 We used 6 Omnilux LED bulbs located at a close chamber, and an incident photon flow per unit volume I_o was 5.7 × 10^{-7} Einstein*L^{-1}*s^{-1}. Each trial was performed in triplicate. Plates were analyzed using SkanIt software. We applied an ANOVA test to determine the differences or similarities between treatments and positive control. In addition, a post hoc analysis was performed using Tukey statistics. Finally, differences were considered to be significant when $p < 0.05$.

Results and discussion

UV-Vis assay

The UV-Vis spectrum of (1) (Figure 2), shows a band of maximum absorption located at 414 nm (Soret band), generated by $a_{1u}(\pi) - e_{g}^{1}(\pi)$ transitions and four lower absorption Q band located at 515nm, 547nm, 588nm and 645 nm, which corresponds to $a_{2u}(\pi) - e_{g}^{2}(\pi)$ transitions.36,47 The UV-Vis spectrum of compound (2) shows one Soret band and only two Q bands. When the Sn (IV) ion coordinates nitrogen atoms inside the porphyrin ring, the porphyrin symmetry increases. Furthermore, the reduction in the number of Q bands indicates that the metal effectively entered the macrocycle.36 The intensity of the Q bands is correlated with the relative stability of the metalloporphyrin: when the signals are of low intensity, the metallocomposites are highly stable and their atoms are located in the square plane.39,50
Ohsaki et al. reported a similar change in the UV-Vis spectrum after tin (IV)-insertion into the porphyrin core synthesized in water at ambient temperature. Moreover, the Soret band for \((\text{2})\) had red shift from 414 nm to 425 nm (near to 11 nm). The direct coordination between Sn (IV) ion and porphyrin core could extend conjugation from porphyrin to metal ion; in this case, the electronic excitation will require lower energy absorption due to increasing conjugation—this process requires longer wavelength than pure porphyrin. Figure 2 shows that \((\text{1})\) and \((\text{2})\) have photo-activity inside window 400 to 7000 nm. Although the compounds do not have a considered absorption in the red rank of the visible light spectrum from 600 nm to 800 nm (this radiation can reach a penetration depth of 8.0 mm inside tissue), they absorb radiation inside range 500-600 nm. This radiation penetrates approximately 4.0 mm, and such penetration capacity is suitable for potential application in cutaneous treatments.

Photophysical properties

Deamination of \(\Phi_f\)

Information related to the efficiency of fluorescence emission is important to explain the inactivation pathway related to PDT. Figure 3 shows fluorescence emission for \((\text{1})\) and \((\text{2})\); both show photoluminescence at a visible range in the electromagnetic spectrum. As shown in Figure 3, fluorescence emission wavelength was located at 651 nm for both compounds, the energy transition did not change after the Sn (IV) ion insertion; however, fluorescence emission intensity was more high compound \((\text{1})\). This effect is due to the Sn (IV) ions insertion inside the porphyrin core decreases significantly fluorescence effect. As shown in Table 1, the \(\Phi_f\) of \((\text{1})\) was three times greater than \((\text{2})\); the Sn (IV) ions inside the porphyrin core could increase the non-radiative decay of the excited singlet state of porphyrin. Sn (IV) ions within the porphyrin nucleus could increase disintegration by inter-system crossover (ISC), and this pathway is governed by orbital spin coupling at the central atoms; in this case, the insertion of Sn (IV) reduces the fluorescence emission. A similar effect was reported for cupper insertion inside meso-porphyrinic complexes.

Deamination of \(\Phi_A\)

The generation of singlet oxygen produced by \((\text{1})\) and \((\text{2})\) was quantified by chemical entrapment using DPBF. To estimate the \(\Phi_A\), the degradation of DPBF was measured at 415 nm over time (Figure 4), the lower the absorbance, the
greater the degradation of DPBF mediated by singlet oxygen. The complex Sn (IV)-porphyrin (2) presented higher ΦΔ compared to (1) (Table 1), the difference in ΦΔ between the compounds is 7%, and this difference is directly attributed to the insertion of the metal ion Sn (IV) inside the macrocycle. Sn (IV) would be generating greater stability of the triplet state of the molecule and improving the interaction with molecular oxygen, which is reflected as a greater translocation of the molecular oxygen spin and its subsequent conversion into singlet oxygen.4,59-62 These sensitizers show promise in PDT for its ΦΔ values, and could in the future be candidates in clinical trials like its counterpart Lutetium Texaphyrin, which has a ΦΔ as low as 0.11.63

Figure 3. Emission spectra of (1) and (2).

Figure 4. Absorbance and degradation of DPBF at 415 nm as a function of reaction time with (1), (2) and standard. Linear fit is also shown.

Table 1. Photophysical properties (Φf y ΦΔ) of (1) and (2).

<table>
<thead>
<tr>
<th>Compound</th>
<th>λabs</th>
<th>λem</th>
<th>Φf</th>
<th>ΦΔ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soret Band</td>
<td>Q Bands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>414 512 546 591 645</td>
<td>651</td>
<td>0.15 ± 0.01</td>
<td>0.55 ± 0.03</td>
</tr>
<tr>
<td>(2)</td>
<td>426 560 594</td>
<td>—</td>
<td>651</td>
<td>0.05 ± 0.01</td>
</tr>
</tbody>
</table>
Electrochemical characterization

The biological systems present microheterogeneity, caused by the coexistence of microphases such as aqueous polar and highly hydrophobic lipid. Therefore it is relevant to study the physicochemical properties of sensitizers at different media. We have studied the electrochemical behavior of (2) using cyclic voltammograms (CV) in four different solvents. Figure 5 shows CVs and Table 2 lists electrochemical parameters. Porphyrin had irreversible one-electron oxidation at E_{pa}, which varies between 0.55 V for DMF and 1.0 V for THF, in addition to one quasi-reversible reduction peak between −1.01 V for THF and −1.41 V for DMF (Figure 5a). The latter is clearer when DMF and DMSO are solvents. CVs (in detail) in DMSO, presenting three redox processes: (a) oxidation processes (I and II) related to the formation of monocationic and dicationic porphyrin spaces, (b) oxidation processes (I and II) related to the formation of monocationic and dicationic porphyrin spaces, (b) reduction process (III) that results in the formation of the anionic porphyrin species (Figure 5b).

![Figure 5](image)

Figure 5. a) CVs of the Sn (IV)-porphyrin complex in DMF, DCM, DMSO and THF (0.1 M of TBAClO$_4$. Scan rate = 0.1 V/s). b) CVs (in detail) for oxidation and reduction of the Sn (IV)-porphyrin complex in DMSO.

Table 2. Determination of half-wave potentials for four different solvents.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Oxidation</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First</td>
<td>First</td>
</tr>
<tr>
<td>DMF</td>
<td>0.71</td>
<td>0.54</td>
</tr>
<tr>
<td>DCM</td>
<td>−</td>
<td>0.83</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.81</td>
<td>0.59</td>
</tr>
<tr>
<td>THF</td>
<td>1.25</td>
<td>1.00</td>
</tr>
</tbody>
</table>
The conformational and structural changes observed in reversible electron transfer reactions can be examined through the potential differences between the first and second oxidation states. Table 2 shows the oxidation and reduction potentials. The couple III presented an almost reversible behavior accompanied by a separation of anodic-cathodic peaks \(\Delta E_{p} > 60 \) mV, in addition, it presented an anodic-cathodic peak potential ratio of approximately unity (1.0). This result is characteristic of a nearly reversible monoelectronic process. The electron-attractant character of the bromine substituents could be significantly influencing the electrochemical properties of the derivatives (1) and (2). Likewise, Table 2, shows a slight effect on \(\Delta E_{1/2} \) by change of dissolution solvent. THF had the highest \(\Delta E_{1/2} \) due to lower dielectric constant value (\(\varepsilon \)), and this solvent had smaller dielectric constant value (\(\varepsilon_{DMSO} = 46.70, \varepsilon_{DMF} = 36.70, \varepsilon_{DCM} = 8.93 \) and \(\varepsilon_{THF} = 7.58 \)) between all aprotic dipolar solvents under study herein. Our data on the potentials for oxidation and reduction of TBrPP-Sn (IV) (Table 2) are consistent with previous reports published in the literature on metalloporphyrin-like compounds.

We studied the scanning speed effect on the current response of CVs for each solvent to determine if the redox process was controlled by diffusion or by adsorption. Figure 6a shows CVs for (2) at different scanning speeds in DMF. Figure 6a shows an anode peak for all scan rates in the range 0.8-1.3 V for all solvents used. The relationship found between the scanning speed and the peak current was directly proportional with linear increase, and the peak potential anodically shifted; additionally, when the scanning speed was increased, the peak became broader. Figure 6b shows that the peak current correlated with the square root of the scan rate for each solvent studied. Table 3 shows the linear equation fitting for each test. The fitting results indicated that the process is controlled by diffusion, then hydrodynamics of media (e.g. polarity, density, viscosity) determines the redox process rate. Furthermore, the linear fit of the line plot of Ip versus \(v^{1/2} \) indirectly indicates a relationship between the diffusion coefficient and DMSO; and DMF had the highest slope value, suggesting that the diffusion coefficient for these solvents was greater than the diffusion coefficient for THF and DCM. This result is associated with the value of the dielectric constant, as discussed.

Figure 7 shows solvent effect on electrochemical band gap value (2) for solvents studied in this work. The data obtained for the redox potentials (pH = 7.0 and room temperature) of the water separation reaction and the carbon dioxide reduction reactions to produce methane and methanol: Potential per redox couple; \(E(H_{2}O/O_{2}) = -5.26 \) eV; \(E(H/H_{2}) = -4.03 \) eV; \(E(CO_{2}/CH_{4}) = -3.79 \) eV; \(E(CO_{2}/CH_{3}OH) = -3.65 \) eV. It is evident that the value of the electrochemical band gap depends on the polarity of the solvent, (2) had the smallest defective gap in THF. A requirement for the photosensitizer in PDT is the band gap; electrochemical characterization indicates that it is appropriate and suitable. Finally, the potentials described in Table 2 corresponding to the redox process of (2) are in agreement with other reports for processes based on rings in porphyrin complexes.

Biological assay

A wide variety of molecules have been evaluated as possible therapy against *Leishmania* spp in recent years: (i) aluminum and zinc phthalocyanines (ii) methylene blue, 5-aminolevulinic acid and porphyrin. The field of research on new substances with challenging properties in medicine and pharmacology is an important topic, which has become more relevant.

Figure 6. (a) CV measured at scanning speeds of 0.1-0.5 V/s for a 1 x 10^{-3} M solution of the Sn (IV)-porphyrin complex in DMF solvent (0.1 M TBAC104). (b) Estimation of the relationship between the maximum current and the square root of the scanning speed.

The conformational and structural changes observed in reversible electron transfer reactions can be examined through the potential differences between the first and second oxidation states. Table 2 shows the oxidation and reduction potentials. The couple III presented an almost reversible behavior accompanied by a separation of anodic-cathodic peaks \(\Delta E_{p} > 60 \) mV, in addition, it presented an anodic-cathodic peak potential ratio of approximately unity (1.0). This result is characteristic of a nearly reversible monoelectronic process. The electron-attractant character of the bromine substituents could be significantly influencing the electrochemical properties of the derivatives (1) and (2). Likewise, Table 2, shows a slight effect on \(\Delta E_{1/2} \) by change of dissolution solvent. THF had the highest \(\Delta E_{1/2} \) due to lower dielectric constant value (\(\varepsilon \)), and this solvent had smaller dielectric constant value (\(\varepsilon_{DMSO} = 46.70, \varepsilon_{DMF} = 36.70, \varepsilon_{DCM} = 8.93 \) and \(\varepsilon_{THF} = 7.58 \)) between all aprotic dipolar solvents under study herein. Our data on the potentials for oxidation and reduction of TBrPP-Sn (IV) (Table 2) are consistent with previous reports published in the literature on metalloporphyrin-like compounds.

We studied the scanning speed effect on the current response of CVs for each solvent to determine if the redox process was controlled by diffusion or by adsorption. Figure 6a shows CVs for (2) at different scanning speeds in DMF. Figure 6a shows an anode peak for all scan rates in the range 0.8-1.3 V for all solvents used. The relationship found between the scanning speed and the peak current was directly proportional with linear increase, and the peak potential anodically shifted; additionally, when the scanning speed was increased, the peak became broader. Figure 6b shows that the peak current correlated with the square root of the scan rate for each solvent studied. Table 3 shows the linear equation fitting for each test. The fitting results indicated that the process is controlled by diffusion, then hydrodynamics of media (e.g. polarity, density, viscosity) determines the redox process rate. Furthermore, the linear fit of the line plot of Ip versus \(v^{1/2} \) indirectly indicates a relationship between the diffusion coefficient and DMSO; and DMF had the highest slope value, suggesting that the diffusion coefficient for these solvents was greater than the diffusion coefficient for THF and DCM. This result is associated with the value of the dielectric constant, as discussed.

Figure 7 shows solvent effect on electrochemical band gap value (2) for solvents studied in this work. The data obtained for the redox potentials (pH = 7.0 and room temperature) of the water separation reaction and the carbon dioxide reduction reactions to produce methane and methanol: Potential per redox couple; \(E(H_{2}O/O_{2}) = -5.26 \) eV; \(E(H/H_{2}) = -4.03 \) eV; \(E(CO_{2}/CH_{4}) = -3.79 \) eV; \(E(CO_{2}/CH_{3}OH) = -3.65 \) eV. It is evident that the value of the electrochemical band gap depends on the polarity of the solvent, (2) had the smallest defective gap in THF. A requirement for the photosensitizer in PDT is the band gap; electrochemical characterization indicates that it is appropriate and suitable. Finally, the potentials described in Table 2 corresponding to the redox process of (2) are in agreement with other reports for processes based on rings in porphyrin complexes.

Biological assay

A wide variety of molecules have been evaluated as possible therapy against *Leishmania* spp in recent years: (i) aluminum and zinc phthalocyanines (ii) methylene blue, 5-aminolevulinic acid and porphyrin. The field of research on new substances with challenging properties in medicine and pharmacology is an important topic, which has become more relevant.
relevant due to the appearance of resistant and emerging microorganisms. The compounds (1) and (2) have been used to evaluate their effects on the viability of \textit{L. panamensis} using the MTT method. The results are presented as cell viability of \textit{L. panamensis} after exposure to different concentrations of (1) and (2) during incubation periods of 24, 48 and 72 hours, in darkness and under irradiation. The same procedure was done for the positive control (Glucantime).

The results show that (1) and (2) presented inhibitory activities on parasite viability (Figure 8). The decrease in the viability of \textit{L. panamensis} was observed to a greater degree on the irradiated tests, this is due to the increased interaction capacity of the test compounds with oxygen, which induced the production of singlet oxygen.

The contrary effect was evidenced for the reference standard, which reached better inhibitory activities on parasite viability (Figure 8). The decrease in the viability of \textit{L. panamensis} was observed to a greater degree on the irradiated tests, this is due to the increased interaction capacity of the test compounds with oxygen, which induced the production of singlet oxygen.

The contrarily effect was evidenced for the reference standard, which reached better inhibitory activities on parasite viability in darkness. The highest effect leishmanicide was observed when the parasite was exposed to light for 24 hours and with concentrations of the compounds higher than 100 μM. Furthermore, the irradiation time (48–72) had no significant effect on viability (%) results compared to samples irradiated for 24 hours. The IC\textsubscript{50} (Table 4) was determined using data found in the 24-hour test. Under irradiation, the IC\textsubscript{50} of both compounds was lower compared to the positive control (Glucantime), with values of 16.5 and 19.5 μM respectively. The activation of sensitizers by light action ensures lower IC\textsubscript{50} values. Besides, in the absence of light, the response was lower, thus being in line with findings of other reports. Our results also show that (1) and (2) cause damage to the parasite, decreasing its survival rate by 1.5 times compared to the standard, which could induce a reduction in the healing time of a lesion.
Conclusions

In the present study, we synthesized and characterized (1) and (2). Compound structures were confirmed by spectroscopic techniques (UV-Vis, FT-IR, 13C-NMR and ESI-mass). Sn (IV) ion insertion inside the porphyrin core reduced significantly Φ from 0.15 to 0.05. Furthermore, Φ_{Δ} increased from 0.55 to 0.59 after metal insertion inside the porphyrin core.

Electrochemical results showed that electrochemical properties were affected by the solvent dielectric constant, where THF had the highest $\Delta E_{1/2}$ due to a lower dielectric constant value. Moreover, the electrochemical assay showed a quasi-reversible reduction peak between -1.01 V in THF and -1.41 in DMF. The inhibitory results shown that (1) and (2) presented inhibitory activities on parasite viability. The highest inhibitory activity on the parasite was observed when the

Figure 8. Parasite viability percentage results for *L. panamensis* against: (a) compounds (1), (b) compounds (2) and (c) positive control drug with incubation periods of 24, 48 and 72 hours.

Table 4. IC_{50} values for compounds TBrPP, TBrPP-Sn (IV) and positive control against *L. panamensis*, 24-hour incubation treatments.

<table>
<thead>
<tr>
<th>compound</th>
<th>IC_{50} (μM) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Darkness</td>
</tr>
<tr>
<td>(1)</td>
<td>16.5±0.1</td>
</tr>
<tr>
<td>(2)</td>
<td>19.0±0.1</td>
</tr>
<tr>
<td>Gluc</td>
<td>56.1±0.1</td>
</tr>
</tbody>
</table>

Conclusions

In the present study, we synthesized and characterized (1) and (2). Compound structures were confirmed by spectroscopic techniques (UV-Vis, FT-IR, 13C-NMR and ESI-mass). Sn (IV) ion insertion inside the porphyrin core reduced significantly Φ from 0.15 to 0.05. Furthermore, Φ_{Δ} increased from 0.55 to 0.59 after metal insertion inside the porphyrin core. Electrochemical results showed that electrochemical properties were affected by the solvent dielectric constant, where THF had the highest $\Delta E_{1/2}$ due to a lower dielectric constant value. Moreover, the electrochemical assay showed a quasi-reversible reduction peak between -1.01 V in THF and -1.41 in DMF. The inhibitory results shown that (1) and (2) presented inhibitory activities on parasite viability. The highest inhibitory activity on the parasite was observed when the
treatments were irradiated for 24 hours and with concentrations of the compounds of 200 μM, strengthening the hypothesis that parasite mortality is mediated by reactive oxygen species (especially singlet oxygen). These compounds were synthesized with low-cost methods and with acceptable synthesis yield, a fundamental aspect in the search for sensitizer candidates. The results of biological activity suggest these compounds could be applied in future applications of \textit{in vivo} models as potential sensitizers of photodynamic therapy.

Data availability

Underlying data

Mendeley Data: Complementary material, http://dx.doi.org/10.17632/h2vmrdz4sg.1.

This project contains the following underlying data:

- 1. UV-Vis compound (1) and (2).xlsx [UV-Vis spectrum of compound 1 and 2]
- 2. Gráficos, RENDIMIENTO CUÁNTICO DE FLUORESCENCIA.xlsx [Graphics, Quantum fluorescence yield of compound 1 and 2]
- 2.1 Calculo de Qf.xlsx [Calculation of Quantum fluorescence yield (Qf) of compound 1 and 2]
- 3.2. Compound 2 (DMSO). Rendimiento Cuántico Oxígeno Singulete.xlsx [Calculation of Quantum Yield Oxygen Single of Compound 2 in DMSO]
- 4. ESI-MS, Compound 1.jpg [Mass spectrum of Compound 1 in methanol]
- 5. FT-IR, Compound 1.pdf [FT-IR spectrum of Compound 1]
- 6. RMN 13C, Compound 1.mnova [RMN 13C spectrum of Compound 1 in CDCl3]
- 7. Assay Biologoly_Compound 1 and 2_Luz vs L. Panamensis_Promastigote.xlsx [Assay Biological of Compound 1 and 2 in the presence of light against L. Panamensis promastigote]

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgments

C.D.U. and W.V. thanks Universidad del Atlántico. F.E.A thanks COLCIENCIAS.

References

Open Peer Review

Current Peer Review Status: ✓ ❓

Review Report 22 September 2021

https://doi.org/10.5256/f1000research.57235.r93076

© 2021 Ribeiro M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Martha Simões Ribeiro

Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, Brazil

This work aimed to verify the photodynamic activity of 5,10,15,20-tetrakis(4-bromophenyl)-porphyrin and dicloro-5,10,15,20-tetrakis(4-bromophenyl) porphyrinato Sn (IV) on promastigotes of Leishmania panamensis after porphyrin synthesis and characterization.

Some issues should be addressed by the authors:

- Please, report the initial inoculum of parasites and the type of microwell plate.
- Please, report the emission of the light source. I am not sure what it means by visible light.
- Please, provide the light dose. Literature commonly uses J/cm^2.
- I am not sure if parasites were irradiated by 24, 48 and 72 h or if they were incubated by those times. Please, clarify.
- Authors report that figure 2 shows the photoactivity of the compounds between 400 and 7000 nm. Please, change 7000 for 700 nm.
- Please add another reference for information regarding light penetration in the skin. Ref 53 is not appropriated. My suggestion is to look for Steven Jacques or Valery Tuchin's papers.
- Please, add information regarding I, II, and III in the legend of figure 5 b.
- The irradiation impaired the glucantime antileishmanial effect. Do authors have a hypothesis for this finding?
- Authors should compare parasite metabolic activity following compound 1 and compound 2-mediated photodynamic treatment. Statistical analysis is necessary. It seems to me that...
compound 1 is significantly better than compound 2. However, compound 2 presented a higher singlet oxygen quantum yield. The authors should discuss this issue.

- I think the last sentence of the manuscript before conclusions is not supported by the authors' findings. Indeed, the authors assumed parasite damage since they do not show any image. However, MTT measures metabolic activity and its sensitivity is not high. Besides, glucantime in the dark promoted similar inactivation. Please, rephrase.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
No

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Optical therapy

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 15 July 2021

https://doi.org/10.5256/f1000research.57235.r88766

© 2021 Mack J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

![John Mack](https://example.com/image.png)

Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
The revisions appear to be acceptable.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I carry out research that is relevant to all aspects of this study.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 24 May 2021

https://doi.org/10.5256/f1000research.55710.r85271

© 2021 Mack J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

John Mack

Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa

The manuscript describes the synthesis and further characterization of a Sn(IV) tetraarylporphyrin complex including its photosensitizer properties and in vitro studies of its activity against L. panamensis. The work has been carried out competently for the most part. The results are very much in line with expectations but are of sufficient interest in the context of the effect of the
porphyrins on the viability of *L. panamensis* to merit publication on a platform like F1000. I recommend approval after minor revisions. I urge the authors to carefully consider the following points while preparing their revised manuscript:

(a) The references should be brought up to date where appropriate. They appear to stop at around 2018 or so.

(b) Were DMSO stock solutions used to solubilize the dyes for the *in vitro* studies? If so, the details must be provided.

(c) Were filters used for the fluorescence measurements in Figure 3 and was a solvent baseline subtracted. The baseline should not rise like it does for compound 2. If not, the fluorescence quantum yields will have to be recalculated.

(d) Can Figure 1 be redrafted in Chemdraw?

(e) Decimal points should be used in the y-axis labels of Figure 2.

(f) There is no need for "(u.a.)" in the y-axis title of Figure 4. Having absorbance values > 2 is problematic in this context in terms of the linear range of the spectrometer used, but if reasonable linearity was obtained there is probably no need to repeat the measurements.

(g) The phrase "have photo-activity inside window 400 to 7000 nm" needs to be fixed.

(h) The \(\lambda_{\text{abs}} \) values for the Q bands should also be provided in Table 1. \(\lambda_{\text{em}} \) would normally be preferred rather than \(\lambda_{\text{emi}} \).

(i) The authors should carefully re-evaluate whether their use of three significant figures in Table 2 is justified.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducing?
Yes

Are the conclusions drawn adequately supported by the results?
Yes
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I carry out research that is relevant to all aspects of this study.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com