CASE REPORT

Case Report: Bilateral diaphragmatic dysfunction due to Borrelia Burgdorferi [version 1; peer review: 2 approved]

Suhail Basunaid¹, Chris van der Grinten¹, Nicole Cobben¹,², Astrid Otte², Roy Sprooten², Rohde Gernot¹

¹Department of Respiratory Medicine, Maastricht University, Medical Centre, Maastricht, 6200 MD, The Netherlands
²Centre of Home Mechanical Ventilation, Maastricht University, Medical Centre, Maastricht, 6200 MD, The Netherlands

First published: 06 Oct 2014, 3:235
https://doi.org/10.12688/f1000research.5375.1
Latest published: 06 Oct 2014, 3:235
https://doi.org/10.12688/f1000research.5375.1

Abstract

Summary:
In this case report we describe a rare case of bilateral diaphragmatic dysfunction due to Lyme disease.

Case report:
A 62-years-old male presented to the hospital because of flu-like symptoms. During initial evaluation a bilateral diaphragmatic weakness with orthopnea and nocturnal hypoventilation was observed, without a known aetiology. Bilateral diaphragmatic paralysis was confirmed by fluoroscopy with a positive sniff test. The patient was referred to our centre for chronic non-invasive nocturnal ventilation (cNPPV). Subsequent investigations revealed evidence of anti-Borrelia seroactivity in EIA-IgG and IgG-blot, suggesting a recent infection with Lyme disease, and resulted in a 4-week treatment with oral doxycycline. The symptoms of nocturnal hypoventilation were successfully improved with cNPPV. However, our patient still shows impaired diaphragmatic function but he is no longer fully dependent on nocturnal ventilatory support.

Conclusion:
Lyme disease should be considered in the differential diagnosis of diaphragmatic dysfunction. It is a tick-borne illness caused by one of the three pathogenic species of the spirochete Borrelia burgdorferi, present in Europe. A delay in recognizing the symptoms can negatively affect the success of treatment. Non-invasive mechanical ventilation (NIV) is considered a treatment option for patients with diaphragmatic paralysis.

Keywords
Lyme disease, diaphragm, Borrelia burgdorferi, hypoventilation
Corresponding author: Suhail Basunaid (s.basunaid@gmail.com)

Competing interests: The abstract describing this work has been presented at the European Respiratory Society Annual Congress 2013.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2014 Basunaid S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Introduction

Patients with bilateral diaphragmatic paralysis may initially present with dyspnea, orthopnea, and as the disease progresses respiratory failure. Bilateral diaphragmatic paralysis is a severe generalized muscle weakness, however in few cases it has been observed that the diaphragm can be the only involved organ. The most common causes of bilateral diaphragmatic paralysis are damage to the phrenic nerves and generalized muscle diseases. Nocturnal ventilatory assistance may have a significant beneficial effect. These patients show reduced ventilatory muscle strength, as measured by maximal inspiratory and trans-diaphragmatic pressures. These symptoms could improve in association with an improved functional score and decreased dyspnea under ventilatory assistance. Non-invasive positive pressure ventilation (NPPV) is the therapeutic tool of choice for symptomatic patients with bilateral diaphragmatic paralysis.

This case report describes the development of diaphragmatic paralysis in a patient with Lyme disease with the need for ventilatory support.

Lyme disease is a tick-borne illness caused by the spirochete Borrelia burgdorferi. There are three species of the Borrelia, all of them appear in Europe, and two appear in Asia. Lyme disease has a broad spectrum of clinical manifestations and varies in severity. Regarding the clinical manifestations of Lyme disease, three phases have been described: early localized, early disseminated and late disease. Early localized disease is characterized by the appearance of the erythema migrans, with or without constitutional symptoms. The early-disseminated disease is characterized by multiple lesions, and the late disease is typically associated with intermittent or persistent arthritis involving one or a few large joints, especially the knee. Late Lyme disease may develop months to a few years after the initial infection.

Case report

A 62-year-old male was referred to our hospital as a second opinion for further analysis of respiratory failure due to bilateral diaphragm dysfunction. He presented initially with flu-like symptoms. These consisted of low-grade fever, arthralgia in the neck and shoulders and symptoms of nocturnal hypoventilation. The symptoms started months before the actual clinical presentation and led to deterioration of the patient’s general condition. Initially there was also a skin rash at the back of his right leg due to an unnoticed tick-bite. The rash started in the form of a ring, later progressed to a size of 10 cm in diameter. At that time the patient had also developed a numbness of the left-side of his face. This gradually resolved during the next days. He complained of dyspnoea that was worse on supine position. There was no evidence of motor/sensory abnormality in the extremities. He had no headache, but he was complaining of neck and shoulder stiffness. He developed a low-grade fever (38.7°C) without shivering. Gradually, fatigue and inactivity evolved.

The patient is an otherwise healthy Caucasian carpenter. He is married and has two healthy kids. He took no medication, had stopped smoking 32 years earlier and drank 2 units alcohol per day. History of allergy developed later when he started ceftriaxon as a second choice for peripheral neuroborreliosis. He works as a volunteer for a forest preservation fund. As a hobby he liked to walk in the woods and he was not aware of any tick-bite.

Initially on physical examination, the patient was hemodynamically stable and not febrile. The fundoscopic exam was normal. The neck was supple and there was no evidence of positive meningeal signs. On percussion the left lung base was higher situated than the right lung base. In upright position our patient had a breathing rate of 24 per minute and SpO2 of 97%. Lying down for 45 second caused severe shortness of breath and an increase in respiratory rate to 40 per minute. Paradoxical breathing was observed and the saturation dropped to 91%.

The chest radiographs (Figure 1a and 1b) demonstrated an elevated left hemi-diaphragm. Screening of diaphragmatic movement during fluoroscopy with sniff manoeuvres revealed a paradoxical movement of both hemi-diaphragms (Figure 2). A pulmonary function test revealed a decrease in supine vital capacity of more than 20% of predicted (Table 2). Arterial blood gases showed pH 7.40, PaCO2 4.9kPa, PaO2 7.8kPa, HCO3 24.6 mmol/l, base excess -0.2 mmol/l. Antibodies to extractable nuclear antigens SSA, SSB, RNP, Sm, SCL-70, Jo-1 and serology of Q-fever were negative. IgG antibodies to B. burgdorferi were detectable in serum.

Ultrasoundography showed lack of thickening of the diaphragm with inspiration indicating a non-functioning diaphragm. Polysomnography without ventilatory support showed periods of nocturnal hypoventilation. Polysomnography showed lack of thickening of the diaphragm with inspiration indicating a non-functioning diaphragm. Polysomnography without ventilatory support showed periods of nocturnal hypoventilation.

Figure 1. (a) Frontal chest radiograph during initial presentation. (b) Lateral chest radiograph during initial presentation.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Pulmonary Function Test</th>
<th>Vital Capacity (liters)</th>
<th>Forced Expiratory Volume in 1 second (liters)</th>
<th>Forced Expiratory Flow at 50% of Expiratory Capacity (liters/second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>FVC 3.5l</td>
<td>FEV1 2.5l</td>
<td>FEF50 1.5l</td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td>FVC 3.0l</td>
<td>FEV1 2.0l</td>
<td>FEF50 1.0l</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgments

The authors thank Dr. Guy van Landeghem for his advice and help with the radiological examination.
Figure 2. Fluoroscopy with sniff test.

Desaturations together with out-of-phase thoracic and abdominal movement (Figure 3 and Figure 4).

There was no clinical evidence of central neurological abnormalities. The electromyogram (EMG) of the diaphragm revealed a normal distal motor latency with normal CMAP-amplitude of phrenic nerve on both sides. Needle EMG revealed good recruitment without spontaneous muscle activity in the right hemi-diaphragm. Technically measurement of the hemi-diaphragm was less reproducible. In conclusion there was no evidence for traumatic phrenic nerve palsy.

An extended differential diagnosis of bilateral diaphragmatic paralysis is presented below in Table 1.

<table>
<thead>
<tr>
<th>Neurologic causes</th>
<th>Myopathic causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal cord transaction</td>
<td>Limb-girdle dystrophy</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>Hyperthyroidism</td>
</tr>
<tr>
<td>Amyotrophic lateral sclerosis</td>
<td>Malnutrition</td>
</tr>
<tr>
<td>Neuralgic amyotrophy</td>
<td>Acid maltase deficiency</td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>Connective tissues diseases</td>
</tr>
<tr>
<td>Guillain-Barre syndrome</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td>Phrenic nerve dysfunction</td>
<td>Dermatomyositis</td>
</tr>
<tr>
<td>Compression by tumor</td>
<td>Mixed connective tissues disease</td>
</tr>
<tr>
<td>Cardiac surgery cold injury</td>
<td>Amyloidosis</td>
</tr>
<tr>
<td>Blunt trauma</td>
<td>Idiopathic myopathy</td>
</tr>
<tr>
<td>Idiopathic phrenic neuropathy</td>
<td></td>
</tr>
<tr>
<td>Post-viral phrenic neuropathy</td>
<td></td>
</tr>
<tr>
<td>Radiation therapy</td>
<td></td>
</tr>
<tr>
<td>Cervical chiropractic manipulation</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Pulmonary function test.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Pred</th>
<th>Upright</th>
<th>% of pred. value</th>
<th>LLN</th>
<th>ULN</th>
<th>Supine</th>
<th>% of pred. value</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1 (L)</td>
<td>3.37</td>
<td>1.79</td>
<td>53.2</td>
<td>75.2</td>
<td>124.8</td>
<td>0.53</td>
<td>15.9</td>
<td>29.8</td>
</tr>
<tr>
<td>FVC1IN (L)</td>
<td>4.47</td>
<td>1.84</td>
<td>41.2</td>
<td>79.5</td>
<td>120.5</td>
<td>0.58</td>
<td>12.9</td>
<td>31.5</td>
</tr>
<tr>
<td>FEV1%VCmax (%)</td>
<td>76.1</td>
<td>79.12</td>
<td>104.0</td>
<td>84.5</td>
<td>115.5</td>
<td>77.67</td>
<td>102.1</td>
<td>98.2</td>
</tr>
<tr>
<td>FVC (L)</td>
<td>4.30</td>
<td>2.26</td>
<td>52.6</td>
<td>76.7</td>
<td>123.3</td>
<td>0.69</td>
<td>16.0</td>
<td>30.4</td>
</tr>
<tr>
<td>PEF (L/s)</td>
<td>8.41</td>
<td>8.53</td>
<td>101.4</td>
<td>76.4</td>
<td>123.6</td>
<td>1.28</td>
<td>15.2</td>
<td>15.0</td>
</tr>
<tr>
<td>PIF (L/s)</td>
<td>5.38</td>
<td>1.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRC (L)</td>
<td>3.63</td>
<td>2.57</td>
<td>70.7</td>
<td>72.9</td>
<td>127.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV (L)</td>
<td>2.47</td>
<td>2.32</td>
<td>94.1</td>
<td>72.7</td>
<td>127.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC (L)</td>
<td>7.14</td>
<td>4.80</td>
<td>67.1</td>
<td>83.9</td>
<td>116.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV%TLC (%)</td>
<td>38.1</td>
<td>48.40</td>
<td>126.9</td>
<td>76.5</td>
<td>123.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRC%TLC (%)</td>
<td>56.8</td>
<td>53.58</td>
<td>94.3</td>
<td>80.5</td>
<td>119.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FEV1: Forced expiratory volume in 1 second
FVC: Forced vital capacity
PEF: Expiratory peak flow
PIF: Peak inspiratory flow
FRC: Functional residual capacity
RV: Residual volume
TLC: Total lung capacity
Figure 3. Polysomnographic tracing without ventilatory support showing paradoxical movements of thorax and abdomen (traces 3 and 4, respiratory inductive plethysmography). From the nasal pressure signal (trace 5) it can be seen that breathing movements follow the inspiration.

Figure 4. Polysomnography with ventilatory support (Bilevel PAP, IPAP=14, EPAP=6, see trace 5). Abdominal and thoracic movements are not completely in-phase because the ventilatory support is not triggered before there is inspiratory flow.
The diagnosis of Lyme disease was made on the basis of serological tests demonstrating recent infection with \textit{B. burgdorferi}. The diagnosis of bilateral diaphragmatic weakness was made on the basis of fluoroscopy with a sniff test (Figure 2) and ultrasonography of the diaphragm. The patient received oral doxycycline (200 mg q.d. for 4 weeks) and nocturnal support with NIV/BiPAP was started. Following therapy, our patient showed a dramatic improvement. He stopped using the nocturnal support of mechanical ventilation. He can now lie down in supine position without being orthopneic. The Epworth Sleepiness Scale (ESS) is obviously improved, and he has no other complaints. The repeated pulmonary function test showed improvement in the forced vital capacity (FVC) in supine position (from 31.5% to 65% predicted), however the difference between supine and upright position remain above the 20%. The pressure of the main inspiratory muscle is also improved in the follow-up. In the repeated polysomnography without ventilator support there was still dominant out-phase motion between abdomen and chest, which indicate persistent diaphragm dysfunction.

Discussion

In our case the diagnosis was based on the clinical signs and symptoms, chest radiographs and serology indicating recent infection by \textit{B. burgdorferi}. Our patient was not aware of a tick-bite one year before the initial presentation, but the numbness in the left side of his face and the skin erythema spontaneously resolved within a couple of weeks, put us on track. By definition, the nervous system involvement only occurs in the disseminated phase of the infection\(^1\).

The symptoms of neurologic involvement may occur weeks to several months after tick bite and may be the first manifestation of Lyme disease\(^1\). Neurological evaluation revealed no abnormalities in our patient. Although the facial nerve is the most commonly affected cranial nerve, the classic manifestations of acute neurologic abnormalities due to Lyme disease are meningitis, cranial neuropathy, and motor or sensory radiculoneuropathy. Each of these findings may also occur individually\(^2\). Ventilatory support is very useful in acute respiratory impairment due to diaphragmatic weakness in a patient with Lyme disease.

In a case report of three patients with neuroborreliosis presenting with acute respiratory impairment, all patients presented respiratory failure associated with progressive nocturnal hypoventilation or prolonged central apnoea. Tracheostomy and prolonged periods of ventilatory support were necessary in all three cases. These cases emphasise that \textit{Borrelia} infection should be considered in the differential diagnosis of unexplained respiratory failure\(^3,4,10\). Bilateral diaphragmatic paralysis is a common cause of complete respiratory failure and the symptoms could be severe\(^6,8\).

In the literature only sporadic case reports comment on the respiratory failure due to Lyme disease\(^1\).

In these cases, patients with respiratory failure caused by diaphragmatic paralysis due to Lyme disease were ventilated maximum for up to 2 months.

Our patient is clinically completely recovered, but he remains, despite improvement, respiratory insufficient according to the pulmonary function test, the polysomnography and the measurement of maximal inspiratory pressure. He shows a good acceptance of the nocturnal ventilatory support. We expect a successful recovery from the phrenic nerve palsy gradually in the next 2 to 3 years. In a group of 50 patients suffering of phrenic nerve palsy about 1/3 fully recovered, 1/3 recovered in 2–4 years and the rest showed no progress in recovering\(^9\).

In conclusion, Lyme disease is an important differential diagnosis in patients with diaphragmatic paralysis. There can be an important delay between the tick bite and the development of symptoms, which has to be taken into account when dealing with these patients.

Consent

Written informed consent for publication of clinical details and clinical images was obtained from the patient.

Author contributions

Competing interests

The abstract describing this work has been presented at the European Respiratory Society Annual Congress 2013.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

5. Gibson GJ: \textit{Diaphragmatic paresis: pathophysiology, clinical features, and...
PubMed Abstract | Publisher Full Text

PubMed Abstract

PubMed Abstract | Publisher Full Text

PubMed Abstract

PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Version 1

Reviewer Report 27 January 2015

https://doi.org/10.5256/f1000research.5738.r7473

© 2015 Welvaart W. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

W.N. Welvaart
Department of Surgery, Riverland Hospital Tiel, Tiel, The Netherlands

The authors report a patient with bilateral diaphragmatic dysfunction due to Borrelia.

I enjoyed reading this interesting and well written manuscript.

I think it would be nice to point out more details about the etiology of functional disorders of the diaphragm and acquired paralysis to explain why Lyme disease should be considered in the differential diagnosis of functional disorders of the diaphragm beside the mentioned extended differential diagnosis in table 1.

Despite my comments, I think that in its current form it can be accepted for indexing.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 05 January 2015

https://doi.org/10.5256/f1000research.5738.r7198

© 2015 Celik S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sezai Celik
Thoracic Surgery Department, Siyami Ersek Cardiothoracic Training Hospital, Istanbul, Turkey

The authors report a patient with bilateral diaphragmatic paralysis due to Borrelia, which
improved with antibiotherapy and non-invasive ventilation. The manuscript is quite well written and sufficiently well documented. The duration of NIV/BiPAP should be clearly pointed out.

It can be accepted for indexing in its current form.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com