Assessing the prevalence of malnutrition in tribal children using MUAC as a screening tool [version 1; referees: 1 approved, 1 approved with reservations, 1 not approved]

Mohtashim A. Qureshi¹, Ihtesham A. Qureshi², Asghar Syed³, Suresh Babu Kokku⁴

¹Mamata Medical College, Khammam, 507002, India
²Medecins Sans Frontieres, AP-CG Project, Bhadrachalam, 507111, India
³Kamineni Institute of Medical Sciences, Marketpalli, 508254, India
⁴National Nutrition Monitoring Bureau (NNMB), National Institute of Nutrition Hyderabad, Hyderabad, 500007, India

Abstract

Children malnutrition is a major public health problem in India. Malnutrition has the maximum impact on children living in rural and tribal areas. Various anthropometric indices such as weight-for-age, height-for-age, weight-for-height and Body Mass Index (BMI) are used to assess the nutritional status of the children. Mid-upper-arm circumference (MUAC) is being used as an alternative to traditional measurements like height and weight, particularly in emergency settings. The World Health Organization (WHO) has recommended MUAC to be used as an independent diagnostic criterion for assessing severe acute malnutrition among children. A total of 4502 children between 6-59 months of age were screened over a period of 12 months, in seven Medicins Sans Frontieres (MSF) Project mobile clinic sites located in states of Andhra Pradesh and Chhattisgarh border areas in India. MUAC was measured with MSF-designed fiber optic measuring tapes. In general, the overall prevalence of malnutrition among 6-59 months children was 15.2%. However the prevalence of malnutrition was higher among children of 6-23 months age group (25.8%) as compared to children of 24-59 months (5.4%). Despite various national nutritional intervention programs have been in operation for about four decades, the malnutrition remains very high particularly among the children living in hilly and remote tribal villages.

This article is included in the Médecins Sans Frontières gateway.

This article is included in the Médecins Sans Frontières: Research on F1000 collection.
Corresponding author: Suresh Babu Kokku (kokkuin@yahoo.com)

Competing interests: No competing interests were disclosed.

How to cite this article: Qureshi MA, Qureshi IA, Syed A and Kokku SB. Assessing the prevalence of malnutrition in tribal children using MUAC as a screening tool [version 1; referees: 1 approved, 1 approved with reservations, 1 not approved] F1000Research 2014, 3:250 (doi: 10.12688/f1000research.5495.1)

Copyright: © 2014 Qureshi MA et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: The author(s) declared that no grants were involved in supporting this work.

Introduction
Periodic growth monitoring of children is an important indicator of the health and nutritional well being of the population. Child undernutrition remains a major public health problem in many countries, and continues to hamper children’s physical growth and mental development. India registered an impressive growth in term of GDP during last few years, but the malnutrition rates among the Indian children remains high. As reported by UNICEF, in India, about 46% of children below three years have stunting (height-for-age <Median-2SD), while 47% have underweight and 16% are wasted.

Traditionally, nutritional status was evaluated using anthropometric measures like height, weight and indices like body mass index (BMI). However mid-upper-arm circumference (MUAC) is being used as an alternative index of nutritional status for children during famines or refugee crises and as an additional screening tool in non-emergencies, and is based on a single cut-off value for all the children less than five years of age. Studies showed that under conditions of reduced food intake, lower levels of subcutaneous fat and muscle mass in human arms tend to correspond to a decrease in the MUAC. In 2005, the World Health Organization (WHO) recommended a MUAC cut-off of 110 mm as an independent diagnostic criterion for severe acute malnutrition. However a higher cut off point of 115 mm was recommended later by WHO as it allows to identify a more accurate number of infants and children with severe acute malnutrition and has a high specificity of more than 99% over the age range 6–60 months. There is large body of evidence strongly suggesting that MUAC is a better indicator of acute malnutrition than weight/height particularly for use in emergency feeding programs.

About MSF, India
Since October 2006, MSF (Médecins Sans Frontières, Doctors without Borders) is committed to providing health services to the people in the Naxal-affected regions of Dantewada (Chhattisgarh state) and Khammam (Andhra Pradesh state) in India. MSF India provides impartial medical assistance to the populations with little or no access to health care in these regions. The agency provides primary and secondary healthcare including reproductive health, immunization, health education and treatment of tuberculosis (TB), malaria and diarrhoea among other diseases in conflict-affected areas. MSF runs a Mother and Child Health Centre (MCHC) in Bijapur, Chhattisgarh, also in addition to other mobile clinics that provide health care directly to people in both states.

Materials and methods
MSF teams carried out MUAC screenings at the Maita, Mallampeta, DharmanaPeta, Pusuguppa, Tippapuram, Yampuram and Puttapalli mobile clinics. MUAC was measured using MSF-designed fiber optic color-coded measuring tapes divided into 2 mm additions. A girth of the child’s arm within the green part of the tape indicates a normal nutritional status. The yellow part of the tape indicates that the child is at risk of malnutrition, the orange color indicates that the child is moderately malnourished and the red color indicates a severe malnutrition and threat of death [MSF Refugee Handbook] (Table 1).

From January 2012 to December 2012, in the above mentioned clinics (Table 2), 2162 children between 6 and 23 months of age and 2340 children between 24 and 59 months of age were screened, making a total of 4502 children. The data were collected over a period of 12 months from seven MSF project clinics in the states of Andhra Pradesh and Chhattisgarh namely Maita, Mallampeta, DharmanaPeta, Pusuguppa, Tippapuram, Yampuram and Puttapalli. These mobile clinics are in hard to reach remote hilly tribal villages with poor infrastructural facilities. In addition to MUAC screening, all children attending the mobile clinics with or without health problems were also screened for estimated age which was determined by noting the birth date recorded on the child’s vaccination card. We have limitation on the availability of data for yellow and green colour measurements.

Results
Among the children between 6 and 23 months of age the severe malnutrition (indicated by the red colour) was 3.8%, whereas in children between 24 and 59 months of age was relatively much lower (0.59%). Similarly, moderate malnutrition among the 6–23 months aged children was almost 22%, significantly higher compared to 24–59 months aged children, which was only 4.8%. The cumulative malnutrition rate among the 6–23 months aged children was 25.8% and among the children between 24 and 59 months of age was 5.4%. However, the overall malnutrition among all screened 6–59 months aged children (4502) was 15.2% (Table 3).

Discussion
The severe malnutrition rates reported in this study are relatively lower compared to figures reported by National Family Health
Survey-3 (NFHS 3) (6.8%), which was carried out across the country among the same age group of children. However, the under nutrition rates reported in this study is still high which may have significant negative impact on health, education and productivity of the children. Persistent undernutrition is a major obstacle to human development and economic growth in India, especially among the rural poor and vulnerable areas, where the prevalence of malnutrition is the highest. Illiteracy, poor health seeking behaviour, unavailability of health care services and poor infrastructure might be other contributing factors of malnutrition among these tribal populations.

The advantage of using the MUAC measurement compared to other nutritional indices is that it is simple to use and it is good to identify the high risk children who need urgent treatment, facilitating the better coverage at the screening and/or diagnostic stage, which is a key component of program success. The revision of the MUAC cut off by WHO to identify severe malnutrition is useful in early diagnosis in less severe state of malnutrition whereby it reduces the duration of treatment in therapeutic feeding centres.

The government of India is implementing various nutritional interventions including ICDS (Integrated Child Development Services) to address the malnutrition problem among children. The ICDS program is a well designed and well placed program to address the child undernutrition in the country. However there was more emphasis on coverage rather than on the quality of the program which resulted in limited impact in addressing the malnutrition problem. Hence, it is necessary that the current ICDS program focuses on improving the quality of tools used to fight the persistent malnutrition among the under-five years old children.

Faulty feeding practices negatively affect the children’s nutritional status, and the current nutrition programs have been unable to make much progress in dealing with these serious issues. We believe that public health interventions for severe malnutrition must simultaneously focus on preventive and promotive aspects, and therapeutic interventions in the community. There is a paucity of local evidence especially in tribal areas which lack clarity about the possible therapeutic protocols to implement community-based management of severe malnutrition. Evidence from other countries may not be relevant to a very diverse and vast country like India. Research organizations and funding agencies need to prioritize the research further and build a valid evidence base to implement community based malnutrition programs.

Data availability

MSF obtained data pertaining only to orange and red colour measurements, as the purpose of MUAC screening at mobile clinics was to detect only those children who were malnourished enough to be included in ATFP [Ambulatory Therapeutic Feeding Programme]. For children to qualify for this programme their MUAC measurements should be <118 mm. Hence, only orange and red color measurements data were collected. MSF did not record green and yellow colour measurements for the above mentioned reason.

Ethical considerations

Data were obtained from MSF mobile clinic databases and as a retrospective study, ethical clearance was not necessary. We thank MSF for providing such data.

Author contributions

SBK and IQ conceived and designed the study. MQ, IQ, SA, SBK analysed the data. SBK and IQ interpreted the data. SBK and MQ drafted the article. All authors revised the article and gave the final approval for publication.

Competing interests

No competing interests were disclosed.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

Table 3. Age group wise distribution of malnutrition.

<table>
<thead>
<tr>
<th></th>
<th>6–23 months</th>
<th>24–59 months</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>All 7 clinics screened</td>
<td>2162</td>
<td>2340</td>
<td>4502</td>
</tr>
<tr>
<td>Red colour</td>
<td>83 (3.8%)</td>
<td>14 (0.59%)</td>
<td>97 (2.1%)</td>
</tr>
<tr>
<td>Orange colour</td>
<td>475 (21.9%)</td>
<td>113 (4.8%)</td>
<td>588 (13.1%)</td>
</tr>
</tbody>
</table>

PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Referee Status: ? ✔ ❌

Version 1

Referee Report 07 December 2017
doi:10.5256/f1000research.5865.r28113

James A Berkley 1,2
1 KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
2 Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK

This is an important topic and data collected in field operations can be potentially informative to practitioners in India and elsewhere. The main results are given as the prevalence of moderate and severe malnutrition determined by MUAC at 7 mobile clinics in an area affected by chronic insurgency. The paper would be considerably strengthened by a more detailed description of research question being asked, the population and how they were sampled. As currently written, no data on treatment and its outcomes are given. Without these, it will be difficult to draw policy-relevant conclusions.

In the Introduction, it would be helpful to clarify some of the terminology for readers:

- In 'However a higher cut off point of 115 mm was recommended later by WHO as it allows to identify a more accurate number of infants and children with severe acute malnutrition…', please say what is meant by 'accurate'. It is known that MUAC and WHZ identify different sets of children with variable overlap. Neither are a true gold standard, but my understanding is the 110cm was a closer match to the previous NCHS WHZ reference, and 115mm is a closer match to the 2006 WHO reference.

- Similarly, in 'here is large body of evidence strongly suggesting that MUAC is a better indicator of acute malnutrition…', please give in more detail what is meant by ‘better’. The strongest means of validation is association of anthropometry with subsequent mortality, where MUAC generally performs better than WHZ. Other considerations in community or emergency settings are: reliability of measurement in the field (a few publications have compared MUAC and WHZ); cost, robustness and portability.

- Besides WHO, please state what the Indian national malnutrition guidelines recommend.

- Please finish the introduction by stating the aims of the study.

In the Materials and Methods, more details of the study population and population they were drawn from are needed:

- Please state the planned study design, or be clear if it was an analysis of operational data (without a prior specific sample size).
- Please state who were the population targeted by MUAC screening. Was it only amongst self-presenters because of a suspected nutrition or health problem, or attending for vaccination?
Why did children attend without health problems? Was community sensitisation done (thus influencing the population to attend, and not representing the usual clinic population)? If not door-to-door, what were the potential biases? Or was it designed to be representative of the community? If so, what fraction of the population were measured?

- Please give some more information about the individual sites, including location (a map would be helpful) and factors relating to food security etc. It would also be helpful to have a couple of sentences explaining the Naxalite problem for unfamiliar readers.

- Please briefly describe training and verification for staff undertaking MUAC.

- In ‘…fibre optic color-coded measuring tapes divided into 2 mm additions…’, should ‘additions’ be ‘divisions’?

- Please mention if the fibre optic tapes have been validated against conventional tapes.

In Results:

- Please begin the results with the numbers screened, rather than putting this in the Methods section. then give the median (IQR) for age for orange and red groups, and % female/male.

- Were there any missing data or implausible values?

- Please provide a histogram of age rather than table 3 since 6-23m is a very large age band, age 6 month olds are quite different to 23 month olds.

- In place of table 3, please give the breakdown of red and orange results by gender, season and by clinic site. Did prevalence vary by site or season? A figure may be useful to show seasonal variation.

- Are there any data on outcomes of treatment? This would make the manuscript much stronger.

In the Discussion:

- It is not possible to make comparisons with the NFH without the study design having aimed to collect community rather than clinic-based populations. This needs to be clarified above. If the population is representative of clinic attendees, then this comparison should be deleted.

- For the sentence ‘evidence from other countries may not be relevant to a very diverse and vast country like India.’, please be much more specific. Do the authors mean anthropometry (posing a challenge to the WHO 2006 findings that advantaged children grow the same in different settings); or in needs and responses to treatment? If the latter, then please provide some discussion and references on trials and CMAM programmes, e.g. http://gh.bmj.com/content/1/4/e000144, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381773/ and http://www.ennonline.net/fex/52/acutemalnutritionindiaschildren to start with.

Is the work clearly and accurately presented and does it cite the current literature?
No

Is the study design appropriate and is the work technically sound?
No
Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
No

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Referee Expertise: Malnutrition, infectious diseases, global health

I have read this submission. I believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Kaushik Bose
Department of Anthropology, Vidyasagar University, Midnapore, West Bengal, India

The present research work is very useful in highlighting the major public health problem of undernutrition among tribal children of India.

Modification required:
1. Re-analyse and compare the prevalence data separately for each state, since there may exist inter-state variation.

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Samiran Bisai
Regional Medical Research Centre for Tribals, Jabalpur, Madhya Pradesh, India

The present research work is very important in an Indian context, highlighting the major public health issue where large numbers of malnourished children reside here and the majority of the malnourished children are found among socially and economically underprivileged communities. Tribal population in
India is considered as socio-economically underprivileged. However, I have a few minor suggestions as under:

1. The present study is clinic based data collected from two states. Re-analysed data separately for each state. There is large interstate variation of malnutrition and culture as well as food variation. Therefore individual tribal specific data is more important.

2. If available include morbidity history in relation to malnutrition. There are a large number of studies highlighting the application of MUAC as screening tool of undernutrition. More importantly it is a low cost technology as compared to measurement of height and weight. It is to be highlighted in the present manuscript.

3. Compare the prevalence with other studies conducted among tribal population in India.

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.