A whole genome atlas of 81 Psilocybe genomes as a resource for psilocybin production. [version 1; peer review: 1 not approved]

Kevin McKernan, Liam Kane, Yvonne Helbert, Lei Zhang, Nathan Houde, Stephen McLaughlin

Research and Development, Medicinal Genomics, Beverly, Massachusetts, 01915, USA

Abstract
The Psilocybe genus is well known for the synthesis of valuable psychoactive compounds such as Psilocybin, Psilocin, Baeocystin and Aeruginascin. The ubiquity of Psilocybin synthesis in Psilocybe has been attributed to a horizontal gene transfer mechanism of a ~20Kb gene cassette. A recently published highly contiguous reference genome derived from long read single molecule sequencing has underscored interesting variation in this Psilocybin synthesis gene cassette. This reference genome has also enabled the shotgun sequencing of spores from many Psilocybe strains to better catalog the genomic diversity in the Psilocybin synthesis pathway. Here we present the de novo assembly of genomes of 81 Psilocybe genomes compared to the P.envy reference genome. Surprisingly, the genomes of Psilocybe galindoi, Psilocybe tampanensis and Psilocybe azurescens lack sequence coverage over the previously described Psilocybin synthesis pathway but do demonstrate amino acid sequence homology to an alternative pathway and may illuminate previously proposed convergent evolution of Psilocybin synthesis.

Keywords
Psilocybe cubensis, Genome, Single molecule sequencing, Psilocybin

This article is included in the Genome Sequencing gateway.
Corresponding author: Kevin McKernan (Kevin.McKernan@medicinalgenomics.com)

Author roles: McKernan K: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Kane L: Methodology, Project Administration, Writing – Review & Editing; Helbert Y: Investigation, Methodology, Project Administration, Supervision, Writing – Review & Editing; Zhang L: Methodology, Project Administration, Resources; Houde N: Investigation, Methodology; McLaughlin S: Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Software, Validation, Visualization, Writing – Original Draft Preparation

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2021 McKernan K et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: McKernan K, Kane L, Helbert Y et al. A whole genome atlas of 81 Psilocybe genomes as a resource for psilocybin production. [version 1; peer review: 1 not approved] F1000Research 2021, 10:961 https://doi.org/10.12688/f1000research.55301.1

First published: 23 Sep 2021, 10:961 https://doi.org/10.12688/f1000research.55301.1
Introduction
Psilocybin has recently been awarded breakthrough drug status by the FDA (Tullis 2021). Psilocybin has also been shown to be a safe alternative to traditional selective serotonin re-uptake inhibitors (SSRIs) for the treatment of depression (Griffiths et al. 2016; Ross et al. 2016; Bogenschutz et al. 2018; Carhart-Harris et al. 2021; Davis et al. 2021). SSRIs have also been shown to be effective at reducing SARS-CoV-2 viral load (Schloer et al. 2020; Creeden et al. 2021; Dechaumes et al. 2021; Schloer et al. 2021; Zimniak et al. 2021). The mechanism of the viral interference is hypothesized to be related to the co-expression of ACE2 and DOPA decarboxylase (DDC) which catalyzes the synthesis of serotonin (Attademo and Bernardini 2021). It is possible psilocybin’s serotonin agonism will show promise in COVID treatment and prevention in the future, thus understanding the biological mechanism of synthesis is of increasing importance.

Two models have been proposed for psilocybin production in *Psilocybe* spp. Horizontal gene transfer has been thoroughly described by Reynolds et al. and Fricke et al., while convergent evolution has been proposed by Awan (Fricke et al. 2017; Awan 2018; Reynolds et al. 2018). Given the broad geographic distribution of psilocybin-producing mushrooms and the history of human cultivation and selection for psilocybin-producing strains, these models may not be mutually exclusive.

To address this question, we whole-genome sequenced 81 *Psilocybe* spp. spore samples to assess the sequence coverage over the previously well-characterized psilocybin synthesis cassette.

Results
In a whole-genome sequencing survey of 81 *Psilocybe* spp. genomes we noticed a lack of sequence coverage over the psilocybin gene cluster described by Reynolds et al. for five of the 81 Psilocybin producing genomes (three *Psilocybe tampanensis*, one *Psilocybe galindoi*, one *Psilocybe azurescens*). These genomes also exhibited genome-wide poor read mapping efficiency to the *Psilocybe cubensis* “P.envy” reference genome, with the exception of the mitochondria and ITS regions. These non-conical psilocybin-synthesizing genomes share 99%, 100%, and 91% ITS sequence identity to a *Psilocybe tampanensis* sequence described by Rockefeller et al. (NCBI accession number: MH220315.1). The sequence from Rockefeller et al. was obtained in the wild and verified with photography of morphological features. The sequences described in this study were derived from spores that can be legally sold for taxonomy purposes but cannot be legally cultured to obtain morphological or chemical verification.

One other genus was labelled as *Panaeolus copelandia* but delivered two 100% identical ITS sequence to *Psilocybe cubensis* and *Aspergillus fumigatus*. This samples was omitted from further analysis. Sequencing and variant calling statistics are displayed in Figure 1 and Supplement Table 1.

Despite the low read mapping rates for *Psilocybe tampanensis*, *Psilocybe galindoi* and *Psilocybe azurescens*, the de novo assemblies of these genomes have high BUSCO completeness scores (93%) and matching ITS sequences suggesting they are indeed Psilocybe but differ enough at the species level to produce low cross species read mapping rates.

An alternative hypothesis is that these libraries are metagenomic or contaminated with non-*Psilocybe* spp. fungi but still provide enough sequence coverage of the ITS region due to its high copy number. Contaminated libraries are usually detectable with bimodal sequencing coverage as its rare for the organisms to be equimolar. All five non-*P. cubensis* species have very uniform sequence coverage across the contigs and high BUSCO completion scores with strong ITS sequence implying clean assemblies.

In combination, these data demonstrate close relatedness of *Psilocybe tampanensis* and *Psilocybe galindoi* but distant relatedness to the *Psilocybe cubensis* “P.envy” reference genome. Given the known psilocybin production in these alternative *Psilocybe* species, these data also imply an alternative synthesis pathway must exist in these species as suggested by Awan.

Sequence coverage analysis
Uniform sequence coverage and high read mapping rates were observed over most of the of *P. cubensis* “P.envy” genome for most of the strains (50 of the 81 are displayed in Figure 2 and Figure 3). A few notable higher coverage exceptions were the ITS region on Scaffold_9 and the mitochondrial genome represented by Scaffold_26. This is not a surprising result given the increased copy number of ITS and mitochondrial sequences in fungal genomes.

A few smaller, repeat-rich contigs (scaffolds 27-31) demonstrated more variable coverage across the *Psilocybe* genus. The ITS region on Scaffold_9 appears to be a tandem repeat which is collapsed in the reference sequence. Scaffolds 27, 28, 31, and 32 have telomeric ends and are small (171 kb, 117 kb, 69 kb, 33 kb). While these smaller contigs have...
Figure 1. (Left) Photographs of strains were obtained from the vendors public websites. (Middle Left). Sequence coverage of all contigs larger than 1 kb where coverage is on the Log Y axis and contigs sorted by length (largest to smallest: left to right) are on the X axis. (Middle Right) Assembly statistics from Quast 5.0. (Right Top) Number of Heterozygous and Homozygous SNPs detected with reads mapped to the *P. cubensis* “P.envy” reference. (Right Bottom) Number of Reads for each run according to Samtools flagstat.
Figure 1. (continued)
variable coverage in _Psilocybe_ spp., it is important to understand that they represent less than 2% of the genome. Scaffolds 29 and 30 lack telomeric sequence and are 74 kb and 69 kb respectively. Three scaffolds have telomeric sequences on both ends. (Scaffold_2: 4.3 Mb, Scaffold_3: 4.1 Mb; Scaffold_9: 2.3 Mb) suggesting these are tip-to-tip chromosome assemblies.

The genomes most diverged from the _P. cubensis “P.envy”_ reference genome (_P. tampanensis, P. galindoi, P. azurescens_) exhibited very low read mapping rates. This is demonstrated by _P. azurescens_ (OR-Coast) in Figure 3. This genome-wide low mapping rate was also observed in the psilocybin production cassette on Scaffold_7 (Figure 4 and Figure 5).

Despite the low read mapping rates to _P. cubensis “P.envy”, P. tampanensis_ assembled into 23 kb N50 genome with a 93% BUSCO completeness score and a 99% identical match to Rockefeller _et al_. ITS sequence for _P. tampanensis_. These low mapping rates are reflective of a highly diverged species at the nucleotide level but to exhaust the exploration of psilocybin production, amino acid level homology was further explored.

To search for pathway redundancy, we utilized tBLASTn to identify alternative psilocybin-producing enzymes in the reference _P. cubensis “P.envy”_ genome. PsiK exists in the conical cluster on scaffold_7 but also has a close homolog on scaffold_1. The copy in the conical cluster on scaffold_7 has a unique SnpEFF high impact variant at p.Arg173Gly that only exists in _P. cubensis “P.envy”_ (Figure 6B). The copy on Scaffold_1 is missing the 5’ exon in _P. tampanensis, P. galindoi_ and _P. azurescens_, and is significantly diverged. The most closely related Scaffold_7 PsiK amino acid sequences are seen in a multiple sequence alignment seen in Figure 6A. Further cloning and expression is required to confirm if this additional copy provides any pathway redundancy. Of interest, these alternative alignments are only partially clustered with PsiM and often PsiM is located in the middle of 80 kb contigs in the absence of other pathway related genes (Table 1). This demonstrates a non-clustered psilocybin synthesis pathway in the non-_P. cubensis_ strains.

We constructed a phylogenetic tree (Figure 7) of the various genomes. Many of the genomes share strain names but were acquired from different spore banks (PS versus SW versus ITW versus Mush). These phylogenetically cluster together as expected. Many samples were sequenced multiple times as biological replicas and are represented in the sample nomenclature as Name_replica_vendor.
Conclusions

These data support both Reynolds et al. and Awan in that psilocybin synthesis appears to have evolved both a conserved ~20 kb cassette seen in many *P. cubensis* fungi but also a less clustered pathway in regards to a non-contiguous PsiM gene that still needs further characterization and scrutiny. Alternative psilocybin production has also been suggested in the cicada-infecting *Massospora* spp. fungi (Boyce et al. 2019). Taken together, these data underscore the need for further exploration of psilocybin genomics for alternative or redundant synthesis pathways. Given the divergence of the other psilocybin-producing mushrooms, simply mapping reads from other *Psilocybe* species to the *P. cubensis* “P.envy” reference genome can be misleading. Until more complete references exist for the *P. tampanensis*, *P. azurescens* and *P. galindoi*, searching for conserved amino acid sequences more tolerant to synonymous DNA mutations will be required. The genetic variation in the species is substantial and these genomes will help to further correlate genotype to chemotype associations for this nascent field.

Methods

DNA isolation

Spores were obtained from four vendors (sporeworks.com, Premiumspores.com, Mushrooms.com and Inoculate TheWorld.com). Spore preparations utilized a modified DNA isolation procedure described in McKernan et al. (McKernan 2021). Briefly 1.4 mL of spores was centrifuged, decanted and resuspended in 200 μL of ddH₂O. 25 μL
of a thaumatin-like protein was added and incubated at 37°C (Medicinal Genomics part #420206) for 30 minutes. 12.5 μL of MGC lysis buffer was added and incubated at 65°C for 30 minutes with 9 steel beads. Vortexing was performed every 7 minutes. Lysed sample were micro-centrifuged and 200 μL of supernatant was aspirated and added to 250 μL of Medicinal Genomics (MGC) binding buffer (MGC part# 420001) for magnetic bead isolation. The samples were incubated with the MGC magnetic bead mixture for 10 minutes, magnetically separated and washed two times with 70% ethanol. The beads were dried at 37°C for 5 minutes to remove excess ethanol and eluted with 25 μL of ddH2O.

Library construction for whole genome sequencing

Fragmentation

Genomic DNA (gDNA) was quantified with a Qubit (Thermo Fisher Scientific) and normalized to reflect 4–8 ng/μL in 13 μL of TE buffer. Libraries were generated using enzymatic fragmentation with the NEB Ultra II kits (NEB part # E7103). Briefly, 3.5 μL of 5× NEB fragmentation buffer and 1 μL of Ultra II fragmentation enzyme mix are added to 13 μL of DNA. This reaction was tip-mixed 10 times, vortexed, and quickly centrifuged. Fragmentation was performed in a BioRad CFX96 thermocycler at 3.5 minutes at 37°C, 30 minutes at 65°C. The reaction was kept on ice until ready for adaptor ligation.

Adaptor ligation

The master mix for ligation was prepared on ice using 0.75 μL of Agilent SureSelect Adaptor Oligo Mix, 0.5 μL of ddH2O, 15 μL of New England Biolabs (NEB) Ultra II Ligation Master Mix, 0.5 μL of NEB Ligation enhancer for a total reaction volume of 16.75 μL.

Ligation was performed by the addition of 16.75 μL of ligation master mix to the 17.5 μL Fragmentation/End Prep DNA reaction mixture, incubate for 15 minutes at 20°C. To purify excess adaptors and adaptor dimers, vortex at room temp AMPure XP beads (Beckman Coulter #A63881) to resuspend and add 16 μL (approximately 0.45×) of resuspended AMPure XP beads to the ligation reactions. Mix well by pipetting up and down at least 10 times. Incubate the mixture for 5 minutes at 25°C. Put the PCR plate on an appropriate magnetic stand (Medicinal Genomics #420202) to separate beads from supernatant. After the solution is clear (about 5 minutes), carefully remove and discard the supernatant. Be careful not to disturb the beads that contain DNA targets. Wash the magnetic beads by adding 200 μL of 70% ethanol to the PCR plate while in the magnetic stand. Incubate at room temperature for 30 seconds, and then carefully remove and discard the supernatant. Repeat the ethanol wash once for a total of 2 washes. Remove trace amounts of ethanol from the beads. Air dry beads for ~7 minutes while the PCR plate is on the magnetic stand with the lid open. Remove PCR plate from magnet and elute DNA target from beads into 10 μL of H2O, transfer 9 μL cleaned DNA to a fresh well.
PCR amplification

Add 12.5 μL 2× NEBNext Q5 Hot Start Master Mix (New England Biolabs #M0492S) to 9 μL ligated DNA, then add 3.5 μL NEB 8-bp index primer/universal primer. The reaction was run the cycling program using 98°C for 30 seconds as an initial denaturization step. 6 cycles of denaturization, annealing and extension were performed cycling between 98°C for 10 seconds and 65°C for 75 seconds. A final 65°C for 5 minutes was performed with a final 4°C forever step.

PCR reaction cleanup

Resuspend room temp AMPure XP beads with a brief vortex. Add 15 μL of resuspended AMPure XP beads to the PCR reactions (~25 μL). Mix well by pipetting up and down at least 10 times. Incubate mixture for 5 minutes at room temperature. Put the PCR plate on an appropriate magnetic stand to separate beads from supernatant. After the solution is

Figure 5. Top-Heatmap of Illumina un-normalized raw sequence coverage of the psilocybin synthesis pathway across 43 genomes. Low coverage genomes of the same strain (Costa Rica and Samui) were summed together. Bottom- IGV view of three strains with close homology to the reference genome.
clear (about 5 minutes), carefully remove and discard the supernatant. Be careful not to disturb the beads that contain DNA targets. Add 200 μL of 70% ethanol to the PCR plate while in the magnetic stand. Incubate at room temperature for 30 seconds, and then carefully remove and discard the supernatant. Repeat the ethanol wash once. Air dry beads for 7 minutes while the PCR plate is on the magnetic stand with the lid open. Elute DNA target from beads into 15 μL nuclease free H2O, transfer 15 μL into a fresh well.

<table>
<thead>
<tr>
<th>Sample quality control and sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libraries were evaluated on an Agilent Tape Station prior to pooling for Illumina sequencing. Sequencing was performed by GeneWiz, Cambridge MA. A total of 690 million paired reads (2 x 150 bp) were generated, averaging over 12 million read pairs per sample and a total sequence of 207 Gb.</td>
</tr>
</tbody>
</table>

Figure 6A. Multiple sequence alignment using CLUSTALW of the most closely related PsiK genes in *P. tampanensis*, *P. galindoi* and *P. azurenscens*. The R173G mutation is also unique to *P. cubensis* “P.envy” when considering non-cubensis species.
DNA assembly
Reads were assembled with MegaHit v.1.2.9 (https://academic.oup.com/bioinformatics/article/31/10/1674/177884) (Li et al. 2015; Li et al. 2016). The Nextflow mapping and assembly pipeline is published on GitHub. Quast 5.0 (http://quast.sourceforge.net) was used to calculate the assembly quality statistics (Gurevich et al. 2013). Sequencing data is deposited in NCBI under Project ID PRJNA700437 and PRJNA687911.

Read mapping parameters
Reads were mapped to the *P. cubensis* “P.envy” reference and to their own assemblies to generate BAM files and coverage statistics using bwa-mem (version 0.7.17-r1188).

```
bwa mem -R "@RG\tID:$id_run\tPU:$id_run\tSM:$id_run\tLB:$id_run\tPL:illumina" -t $cpu -M $fasta_ref ${fq [0]} ${fq [1]} |
samtools view -hu - |
sambamba sort --tmpdir=. /dev/stdin -o ${id_sample}.bam
```

A workflow for this is deposited in github. https://github.com/mclaugsf/mgc-public/blob/master/AOAC_TYM_ERV/bwa-pair.nf

Variant analysis
Illumina whole-genome shotgun data (McKernan et al. NCBI Project: PRJNA687911) was mapped to the *P. cubensis* “P.envy” HiFi reference assembly using bwa-mem (version 0.7.17-r1188), samtools (version 1.8), sorted with sambamba (version 0.6.7) and variants were identified using bcftools (v1.10.2) (Danecek et al. 2021).

```
bcftools mpileup -Ou -f $(Hashemi et al.) $(bam) |
bcftools call -m -Ov |
bgzip -c > $(sample)-gvcf.vcf.gz
```
The VCF files were merged using bcftools and left-aligned to split up multi-allelic entries

```
bcftools merge *gvcf.vcf.gz --output-type v > merged.gvcf.gz
bcftools norm -f/NGS/genewiz-june1st-10spores/ref/fungus/Psilocybe_cubensis_Envy_scaffolds.fa -m-any merged-norm.vcf.gz
```
The annotation from the funannotate pipeline was converted from gff3 format into SnpEff (v4.3t. 2017-11-24) database as described here (https://pcingola.github.io/SnpEff/se_buildingdb/)

Phylogenetic analysis

Phylogenetic analysis utilized APE (v5.3.) and SNPRelate (v. 1.20.1) (Zheng et al. 2012; Paradis and Schliep 2019).
Table 1. tBLASTn search of *P. tampanensis*, *P. galindoi*, *P. cubensis* and *P. azurescens* for PsiK, PsiH, PsiD and PsiM reveals a fragmented psilocybin synthesis cluster with PsiM most often being on large but independent contigs disrupting the contiguity of the psilocybin synthesis cluster.

<table>
<thead>
<tr>
<th>NCBI Name</th>
<th>JAIFHE01.1</th>
<th>JAILYQ01.1</th>
<th>JAILYP01.1</th>
<th>JAIFHD01.1</th>
<th>SRX10250988</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. azurescens</td>
<td>P. tampanensis_1</td>
<td>P. tampanensis_2</td>
<td>P. mexicana</td>
<td>P. cubensis (GT)</td>
<td></td>
</tr>
<tr>
<td>PsiK_Contig</td>
<td>JAIFHE0100009952.1</td>
<td>JAILYQ010013513.1</td>
<td>JAILYP010003074.1</td>
<td>JAIFHD010015065.1</td>
<td>K141_42154</td>
</tr>
<tr>
<td>Contig Size</td>
<td>4,254</td>
<td>9,322</td>
<td>8,836</td>
<td>4,016</td>
<td>76,612</td>
</tr>
<tr>
<td>PsiH_Contig</td>
<td>JAIFHE010002467.1</td>
<td>JAILYQ010013513.1</td>
<td>JAILYP010003074.1</td>
<td>JAIFHD010015065.1</td>
<td>K141_42154</td>
</tr>
<tr>
<td>Contig Size</td>
<td>40,681</td>
<td>9,322</td>
<td>8,836</td>
<td>4,016</td>
<td>76,612</td>
</tr>
<tr>
<td>PsiD_Contig</td>
<td>JAIFHE010002467.1</td>
<td>JAILYQ010012987.1</td>
<td>JAILYP010013169.1</td>
<td>JAIFHD010017873.1</td>
<td>K141_42154</td>
</tr>
<tr>
<td>Contig Size</td>
<td>40,681</td>
<td>44,435</td>
<td>44,435</td>
<td>3,528</td>
<td>76,612</td>
</tr>
<tr>
<td>PsiM_Contig</td>
<td>JAIFHE010002467.1</td>
<td>JAILYQ010005515.1</td>
<td>JAILYP010014511.1</td>
<td>JAIFHD010002461.1</td>
<td>K141_42154</td>
</tr>
<tr>
<td>Contig Size</td>
<td>40,681</td>
<td>81,911</td>
<td>82,507</td>
<td>880</td>
<td>76,612</td>
</tr>
</tbody>
</table>
Coverage analysis

Coverage analysis was performed using BAM files mapped to the *P. cubensis* “P.envy” genome reference using bwa-mem as described above (Li 2018). BAM files were analyzed using pileup.sh from the BBmap version 4/30/2020 (http://bib.irb.hr/datoteka/773708.Josip_Maric_diplomski.pdf). The Heatmap was generated using Heatmap.2 from the gplots version 3.1.1 in R Studio (https://www.rdocumentation.org/packages/gplots/versions/3.1.1/topics/heatmap.2).

Data availability

Underlying data

The project contains the following underlying data:

Accession number: NCBI, Project ID PRJNA700437 and PRJNA687911

Root URL: https://www.ncbi.nlm.nih.gov/search/all/?term=PRJNA700437

Accession number URL: https://www.ncbi.nlm.nih.gov/search/all/?term=PRJNA687911

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
References

The authors present genomic data from 81 samples of putative *Psilocybe* spp. The source of the samples used for sequencing is problematic in several ways, not the least being clearly documented misidentification and contamination. This reality limits the accuracy of the interpretations made. Moreover, these results are not reproducible without some form of voucher material, but the authors make no mention that such material exists. Therefore, the interpretation of the data presented is entirely dependent on identifications provided by the retail vendors that supplied the spore samples. Yet there is little to suggest that these have the appropriate authority or independently verifiable reference library to justify these identifications.

Ultimately, then, what the authors present are genomic data for 81 spore samples from what are putatively identified as *Psilocybe* spp., but which most appear to be strains of the widely cultivated *P. cubensis*. Still, these are only verified by corroborating data from spore supplies sourced from a few vendors. In my opinion, this is not very rigorous science (although I must sympathize with the difficulty presented by legal authorities to do much better). Nonetheless, the genomic data do provide some preliminary insight into the variation of the psilocybin biosynthesis pathway that may be expected from variants of *P. cubensis* and confirms earlier reports of variation in other *Psilocybe* spp., including the potential existence of an alternative, non-canonical pathway.

Overall, the manuscript seems hastily written. The Introduction is brief and framed around what appears to be a misinterpretation of the published literature. There are many misspellings, grammatical errors, and awkwardly worded statements throughout. Capitalizations and italics are not used in a consistently appropriate way. The authors should also provide authorities of scientific names at first use to avoid nomenclatural ambiguity.
More specific comments are below:

- The potential therapeutic value of psilocybin for SARs-CoV-2 seems a bit hand-wavy.

- “Two models have been proposed for psilocybin production in Psilocybe spp. Horizontal gene transfer has been thoroughly described by Reynolds et al. and Fricke et al., while convergent evolution has been proposed by Awan (Fricke et al. 2017; Awan 2018; Reynolds et al. 2018).”

 This is incorrect. None of these studies proposed either HGT nor convergent evolution for psilocybin biosynthesis IN *Psilocybe* spp. HGT has been proposed as the mechanism for the gain of psilocybin biosynthesis in other genera (e.g., *Panaeolus, Pluteus*) and convergent evolution has been proposed for the gain of psilocybin biosynthesis in the genus *Inocybe*. Thus, these statements are inaccurate representations of the published literature and need to be corrected.

- “Given the broad geographic distribution of psilocybin-producing mushrooms and the history of human cultivation and selection for psilocybin-producing strains, these models may not be mutually exclusive.”

 I agree that these models are not necessarily mutually exclusive (indeed, none of the previous studies suggested so), but what does the “history of human cultivation and selection for psilocybin-producing strains” have to do with it? Moreover, can the authors cite the statement of “history of human cultivation” (what history)? And what evidence is there for “selection for psilocybin-producing strains”?

- “These non-conical psilocybin-synthesizing genomes...”

 Do the authors mean “non-canonical”? N.B. the term “conical” appears throughout the manuscript where I suspect the term “canonical” is intended.

- “…99%, 100%, and 91% ITS sequence identity to a *Psilocybe tampanensis* sequence described by Rockefeller et al. (NCBI accession number: MH220315.1)”

 First, “described” is not the correct term. Second, the sequence in GenBank was derived from a specimen identified as *P. tampanensis*. Third, the percent identities cited are not sufficient --- percent identity over what portion of the sequence? And was this one sequence the top hit for all three of the ITS sequences derived from the WGS?

- The degree to which the spore samples apparently consisted of contaminants and in at least one clear case a gross misidentification calls into question the identity, reliability and reproducibility of the results from the other “strains.”

- “Contaminated libraries are usually detectable with bimodal sequencing coverage as it is rare for the organisms to be equimolar. All five non-*P. cubensis* species have very uniform sequence coverage across the contigs and high BUSCO completion scores with strong ITS sequence implying clean assemblies.”

 This is one way to determine endogenous content, but other methods to detect contaminant DNAs in metagenomic datasets (e.g., taxon-annotated GC plots) should be
explored to corroborate the indirect inference from sequencing coverage (esp. b/c this assumes that target and contaminant sequencing coverage is bimodal, which is not necessarily the case if there are multiple contaminants and/or contaminants are at varying proportions relative to target).

"In combination, these data demonstrate close relatedness of Psilocybe tampanensis and Psilocybe galindoi but distant relatedness to the Psilocybe cubensis "P.envy" reference genome. “ The authors should be more cautious about this interpretation, as there is no evidence to support the identifications of the strains supplied nor their identity with authentic specimens (e.g., types or others). Who knows if these spores labeled as these species/strains are correct?

"Given the known psilocybin production in these alternative Psilocybe species, these data also imply an alternative synthesis pathway must exist in these species as suggested by Awan.”

It should be made clear that in Awan et al., it was proposed that convergent evolution explains psilocybin biosynthesis in *Inocybe*, a distant relative of *Psilocybe*. On the other hand, Awan et al. did suggest there may be an alternative pathway present in the *Psilocybe* genomes. Which of these are the authors referring to here?

"PsiK exists in the conical cluster on scaffold_7 but also has a close homolog on scaffold_1.”

While this may be true, the high potential for contaminant DNAs in the samples sequenced suggests this may be the result of a metagenome assembly. This alternative needs to be ruled out.

"biological replicas”

Replicates? And what evidence is there that these are truly biological replicates rather than the same spores being sourced from multiple places? (what’s the likelihood that these companies are all deriving their spores independently?)

“These data support both Reynolds et al. and Awan in that psilocybin synthesis appears to have evolved both a conserved ~20 kb cassette seen in many *P. cubensis* fungi but also a less clustered pathway in regards to a non-contiguous *PsiM* gene that still needs further characterization.”

Please be more specific wrt what in these previous studies is being cited. At the beginning the authors incorrectly cite these papers as evidence of HGT and convergent evolution of psilocybin biosynthesis in *Psilocybe*. So what exactly is being cited here?

“Given the divergence of the other psilocybin-producing mushrooms, simply mapping reads from other *Psilocybe* species to the *P. cubensis* “P.envy” reference genome can be misleading.”

Why did the authors not bother to attempt to align these to the other existing *Psilocybe* genomes? Two other (potentially closely related) genomes are available (*P. cyanescens* and *P. serbica*), yet the authors made no attempt to align their reads from the putative *P. tampanensis*, *P. galindoi*, or *P. azurescens* to them (the latter is a potential synonym of *P.*
cyanescens). This could help further clarify the source of the low mapping rates to "P. envy" and may provide further insight into the non-canonical homologs of PsiK and PsiM that they report here.

- Methods: generally thorough enough to be reproducible, but in some parts it reads like a laboratory protocol rather than text written for a manuscript.

- Can the authors display the phylogenetic tree differently? As it currently is, it is difficult to interpret clustering because the branch lengths have been transformed in a way that is awkward to read. I would also suggest using an unrooted tree and provide branch support values.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: genomics, phylogenetics

We confirm that we have read this submission and believe that we have an appropriate level of expertise to state that we do not consider it to be of an acceptable scientific standard, for reasons outlined above.
The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com