REVIEW

Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells [version 1; referees: 3 approved]

Xiaojing Ma¹,², Wenjun Yan¹, Hua Zheng¹, Qinglin Du¹, Lixing Zhang¹, Yi Ban², Na Li¹, Fang Wei¹

¹State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
²Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA

Abstract

Interleukin-10 and Interleukin-12 are produced primarily by pathogen-activated antigen-presenting cells, particularly macrophages and dendritic cells. IL-10 and IL-12 play very important immunoregulatory roles in host defense and immune homeostasis. Being anti- and pro-inflammatory in nature, respectively, their functions are antagonistically opposing. A comprehensive and in-depth understanding of their immunological properties and signaling mechanisms will help develop better clinical intervention strategies in therapy for a wide range of human disorders. Here, we provide an update on some emerging concepts, controversies, unanswered questions, and opinions regarding the immune signaling of IL-10 and IL-12.
Interleukin-12 signaling

Interleukin-12 (IL-12) is the first member of a family of heterodimeric cytokines identified. It is a pro-inflammatory molecule produced primarily by professional antigen-presenting cells (APCs), including monocytes/macrophages and dendritic cells (DCs). IL-12 is composed of p35 (encoded by Il12a) and p40 (encoded by Il12b) chains, and it principally activates natural killer (NK) cells and induces the differentiation of naïve CD4+ T lymphocytes to become interferon-gamma (IFN-γ)-producing T helper 1 (Th1) effectors in cell-mediated immune responses to intracellular pathogens. IFN-γ, in turn, acts on APCs to augment IL-12 secretion in a positive feedback loop. The p40 chain can also form a dimer with p19 to give rise to IL-23, which is required for Th17 differentiation, function, and maintenance. Similarly, the p35 chain can combine with Epstein-Barr-induced 3 (EBI3) to form IL-35, the latest addition to the IL-12 family, in induced regulatory T-cell population (referred to as iTreg) and in tolerogenic human DCs. IL-12 and IL-23 have overlapping as well as distinct immunostimulatory activities. IL-12 signals through the IL-12 receptor (IL-12R) comprised of the IL-12Rβ1 and IL-12Rβ2 subunits that are expressed on T cells, NK cells, and DCs. IL-12 stimulates non-receptor Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2) activities, leading to the phosphorylation of signal transducers and activators of transcription (STATs) (in particular, STAT4 homodimers). IL-35 is an immunosuppressive cytokine that signals through IL-12β2 and gp130, resulting in the heterodimeric formation and activation of STAT1 and STAT4, which in turn bind to the unique promoter regions of Ebi3 and Il12a.

Regulation of interleukin-12 production

Both Il12a and Il12b genes need to be expressed coordinately in the same cells to produce biologically active IL-12. Paradoxically, the mRNA of Il12a is widely expressed in many cell types, albeit at low levels in some cells, most of which do not even produce IL-12. The Il12b mRNA is restricted to cells that can produce biologically active heterodimer. Synthesis of the p35 chain was proposed to be a rate-limiting step for IL-12 production for its low abundance in some cells, most of which do not even produce IL-12. Over the past 20 years, a large number of molecular analyses have identified numerous transcription factors that bind to the promoter regions of Il12a and Il12b. The promoters of Il12a have been shown to bind transcription factors such as nuclear factor kappa B (NFκB) c-Rel (in DCs), c-Maf (as an inhibitor), and IFN regulatory factor 1 (IRF-1) in activated macrophages. Goriely et al. showed that lipopolysaccharide (LPS)- and IFN-γ-induced human Il12a gene activation was immediately preceded by a selective and rapid remodeling of a single positioned nucleosome within the -396/-241 region of the promoter containing critical Sp1-binding sites. The same group also reported that, in human DCs activated through Toll-like receptor 3 (TLR3) and TLR4 but not TLR2, IRF-3 was recruited to an IFN-stimulated response element (ISRE) between -251 and -242 in the Il12a gene promoter. Accordingly, DCs from IRF-3-deficient mice were impaired in TLR4-induced Il12a mRNA expression and IL-12p70 synthesis.

Interestingly, a novel nuclear protein called GC-binding protein (GC-BP) was found in macrophages that engulf apoptotic cells via phagocytosis. GC-BP is activated via tyrosine phosphorylation induced by interactions between the phagocyte and the apoptotic cell expressing externalized phosphatidylserine. GC-BP has a direct and selective inhibitory activity on the transcription of the Il12a gene and IL-12 production. It is speculated that this is part of the mechanisms that help suppress autoimmune responses to self-antigens during the clearance of apoptotic cells. This notion is consistent with the converse observation of the induction of IL-10 production during phagocytosis of apoptotic cells.

Compared with Il12a, the Il12b promoter has been more extensively studied, and numerous transcriptional factors have been identified as regulators for Il12b transcription. When murine macrophages are stimulated with LPS, nucleosome 1 is selectively remodeled so that the transcription factor CCAAT enhancer-binding protein β (C/EBPβ)/LAP could gain access to this region. However, remodeling of nucleosome 1 alone is not sufficient for Il12b transcription and more factors are required for its induced expression. These factors include NFκB, PU.1, IRF-1, nuclear factor in activated T cells (NFAT), and IFN consensus sequence-binding protein (ICSBP, also called IRF-8) in human or murine macrophages or both. Activation protein 1 (AP-1) has been reported to be an activator of Il12b transcription in LPS-stimulated macrophages, whereas in tumor-derived prostaglandin E2 (PGE2)-treated macrophages, it appears to play the opposite role: inhibiting Il12b transcription and promoting tumor progression in vivo. The controversy has not been resolved to date.

Goodridge et al. observed that whilst LPS-induced p38 mitogen-activated protein kinase (MAPK) activation is required for the induction of both p40 and p35 subunits, extracellular signal-regulated kinase (ERK) signaling mediates negative feedback regulation of p40, but not p35, production. Such ERK activation is downstream of calcium influx and targets LPS-induced Il12b transcription by suppressing the synthesis of the transcription factor IRF-1. In contrast, the negative regulation of the p35 subunit of IL-12 occurs via a calcium-dependent, but ERK-independent, mechanism, which was thought to involve NFκB signaling.

CpG oligodeoxynucleotides (ODN) activates the TLR9/MyD88/ TRAF6 (TNF receptor-associated factor 6) cascade leading to the activation of I kappa B kinase (IKK) -NFκB and JNK, which are critical for the production of pro-inflammatory cytokines. Ma et al. reported that the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is involved in this activation process. DNA-PKcs-deficient DCs exhibited a defect in the IL-6 and IL-12p40 expression in response to CpG-ODN in a dose- and time-dependent manner. Loss of DNA-PKcs impaired phosphorylation of IKK, IkBα, NFκB, and JNK in response to CpG-ODN. TLR2-mediated production of IL-12p40 in macrophages and macrophages triggered by the synthetic ligand Pam3csk4 has been shown to activate the phosphorylation of JNK-1/2. Blocking JNK with a chemical inhibitor resulted in inhibition of Pam3csk4-induced p40 production. However, the further downstream signaling is not clear.

At the transcriptional level, the differential regulation of Il12a and Il12b genes is well illustrated in macrophages derived from C/EBPβ-deficient mice. In sharp contrast to the enhanced induction of Il12b mRNA, C/EBPβ+ primary macrophages derived from...
both the bone marrow and the peritoneal cavity displayed a totally
defective production of II12a mRNA. This may explain the defec-
tive production of bioactive IL-12 and the impaired Th1 responses
of C/EBPβ-deficient mice to Candida albicans, a pathogen that
requires Th1-mediated control7. The enhanced p40 production in
C/EBPβ-deficient macrophages is in direct contradiction to an
earlier molecular study28. It cautions against directly extrapolating
in vitro data for its in vivo relevance.

An important pathway in robust IL-12 induction is the requirement
for “priming” of LPS-activated macrophages and DCs by IFN-γ for
the expression of maximal amounts of II12a and II12b mRNAs and
for IL-12 production4,20,30. The IFN-γ priming is a positive feedback
mechanism for more robust IL-12 production in certain immune
responses, as the primer IFN-γ is derived principally from NK cells
and activated Th1 lymphocytes, cells that are initially activated by
APC-derived IL-12 upon pathogen infection. Overall, inadequate
investigations have been performed to elucidate this important
feedback amplification mechanism in a comprehensive manner.

Negishi et al. reported that MyD88-associated IRF-1 migrates into
the nucleus more efficiently than non-MyD88-associated IRF-1. The
critical role of MyD88-dependent “IRF-1 licensing” is under-
scored by the observation that the induction of a specific gene
subset downstream of the TLR-MyD88 pathway, such as IFN-β,
inducible nitric oxide (NO) synthase, and IL-12p35, is impaired in
Ifit1-deficient cells33. The study places IRF-1 as an additional mem-
ber participating in MyD88 signaling and provides a mechanistic
explanation for the enhancement of the TLR-dependent IL-12p35
induction program by IFN-γ.

The TLR-NFkB-dependent pathway inducing IL-12 and the
IFN-dependent pathway inducing type I IFN (α and β) and IFN-
regulated genes have also been shown to cooperate for the robust
production of IL-12 in DCs. Gautier et al. reported that R-848/
Resiquimod (TLR7 ligand and TLR7/8 ligand in human)
synergized with poly (I:C) (TLR3 ligand) or LPS (TLR4
ligand) in inducing high levels of bioactive IL-12p70 secretion and
IFN-β mRNA accumulation by mouse bone marrow-derived DCs
(BMDCs). Strikingly, IL-12p70, but not IL-12p40, secretion was
strongly reduced in BMDCs from STAT1−/− and IFNAR−/− mice.
STAT1 tyrosine phosphorylation, IL-12p35, and IFN-γ mRNA
accumulations were strongly inhibited in IFNAR−/− BMDCs acti-
vated with the TLR ligand combinations. Similar observations
were made by using neutralizing anti-IFNAR2 antibodies in human
TLR8-expressing peripheral blood monocyte-derived DCs34. This
study suggests that TLR engagement on DC induces endogenous
IFNs that cooperate with the NFkB-inducing machinery for optimal
IL-12p70 secretion.

Signaling events from distinct classes of pathogen recognition
receptors (PRRs) affect each other in modulating innate and adap-
tive immunity through modulating IL-12 production. Activation of
cytosolic RIG-I-like receptors (RLRs) results in the selective sup-
pression of TLR-induced transcription of the II12b gene through
the binding of RLR-activated transcription factor IRF-3 to the II12b
promoter, where it competitively edges out IRF-5, a transcriptional
activator of II12b that binds to the same sequence motif, the ISRE.

IRF-5 binding in this region is usually accompanied with chroma-
tin remodeling of both regulatory regions and the formation of a
productive transcriptional complex containing other transcription
factors34. Consequently, the activation of RLRs in mice attenu-
ated TLR-induced Th1 and Th17 responses against viral infec-
tion of mice34. Similarly, Kim et al. identified a crosstalk between
TLR4- and nucleotide-binding oligomerization domain 2 (NOD2)-
mediated activities in the regulation of intestinal mucosal defense
and tissue homeostasis via NOD2 signaling selectively interfering
with TLR-induced II12a gene expression and IL-12 production via
the transcriptional regulator C/EBPβ33.

Emerging evidence has demonstrated that mammalian target of
rapamycin (mTOR) is an important regulator of immunity by mod-
ulating the differentiation, activation, and function of lymphocytes
and APCs44. In exploring the long-held “puzzle” of low levels of
IL-12 induced through TLR4 signaling in macrophages and DCs,
which implied the existence of stringent regulatory mechanisms,
He et al. identified the critical regulatory roles of three protein
kinases, mTOR, phosphoinositide-3 kinase (PI3K), and ERK, in
TLR-induced Th1 responses by reciprocally controlling IL-12 and
IL-10 production in innate immune cells of murine origin35. Moreo-
ver, it was revealed that c-fos was a key molecule that mediated
the kinase-regulated IL-12 and IL-10 expression in TLR4 signaling
by regulating c-fos expression and NFkB binding to the promoters
of IL-12 and IL-10 in a differential manner36. These findings
confirmed the role of c-fos in this capacity reported in an earlier study
by Mitsuhashi et al.37 and were corroborated by a similar study in
human DCs with an additional delineation of the opposing activi-
ties of the two components of the mTOR complex, mTORC1 and
mTORC2, in this signaling pathway38. Thus, by controlling the bal-
ance between IL-12 and IL-10, mTOR can specifically regulate the
TLR-induced T-cell response in vivo. Indeed, blockade of mTOR
by rapamycin efficiently boosted TLR-induced antigen-specific T-
and B-cell responses to hepatitis B virus and hepatitis C virus
vaccines39. This study links a ubiquitously present and fundamen-
tally important pathway of cellular survival, proliferation, and func-
tion to the production of a highly restricted specialist molecule in
the immune system. Notably absent from the study is the answer to
an obvious question: is the induction of IL-10 via mTOR signaling
responsible for the inhibition of IL-12 production? Figure 1 sum-
marizes our current understanding of the transcriptional mecha-
nisms regulating the IL-12p40 promoter19.

Interleukin-10 signaling

IL-10 was first discovered by complementary DNA clone-based
screening for secreted factors by established Th2 cells that regu-
late cytokine production by activated Th1 cells40,41. IL-10 is a major
immunosuppressive cytokine. It is a critical component in the
maintenance of the fine balance between shifted and potent immune
responses against invading pathogens and the control of detrimental
pathological injury. Almost all cells of the innate and adaptive arms
of the immune system can produce IL-10, including DCs, mac-
rophages, mast cells, NK cells, eosinophils, neutrophils, B cells,
CD8+ T cells, CD4+ Th1, Th2, and Th17 cells42,43, and regulatory
T (Treg) cells44,45. The major role of IL-10 is to limit the extent of
the activation of both the innate and the adaptive immune cells
to maintain a homeostatic state. This role of IL-10 is vitally important
in protecting the host from infection-associated immunopathology, autoimmunity, and allergy, such as sepsis, arthritis, insulinitis, inflammatory bowel disease (IBD), and so on. In addition to these activities, IL-10 regulates growth or differentiation (or both) of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells.

The IL-10 receptor is composed of at least two subunits that are members of the IFN receptor (IFNR) family, the ligand-binding subunit (IL-10Rα and IL-10R1) and the accessory subunit for signaling, IL-10R2 (IL-10Rβ). IL-10, produced from various cellular sources upon exposure to pathogens and inflammatory insults, binds to its receptor on target cells. Activation of the IL-10 receptor complex induces a tetramer consisting of two IL-10R1 and two IL-10R2 chains, which bind homodimeric IL-10 to the extracellular domains of IL-10R1. Upon the receptor-ligand engagement, phosphorylation of the receptor-associated protein tyrosine kinase JAK1 is recruited to the intracellular domain by the IL-10R1 chain, while non-receptor TYK2 is recruited to the receptor complex by IL-10R2. These kinases serve as a temporary docking site for inactive cytosolic STAT1 or STAT3 or both, which are recruited by JAK1 and TYK2 to the site upon phosphorylation of the IL-10R1 chain at two tyrosine residues. The STATs bind to the IL-10R1 chain via the Src homology 2 (SH2) domain and are tyrosine-phosphorylated by the receptor-associated JAKs. Activation of STAT3 leads to its homodimerization, similarly to STAT1.

Translocation of activated STATs to the nucleus renders high-affinity binding to the promoter regions of IL-10-responsive genes. Successful engagement of the IL-10 receptor complex subsequently activates distinct JAK-STAT pathways and downstream signaling events that converge through various mechanisms to influence nuclear transcriptional events such as those mediated by NFκB.

It is important to note that the cellular source of IL-10 production is critical to its immunological activities in a cell-specific manner. Mice with a specific deletion in T cells generated by Cre/loxP-mediated targeting showed heightened contact hypersensitivity reactions and succumbed to severe immunopathology upon infection.
with Toxoplasma gondii. Splenocytes from these mice secreted increased amounts of pro-inflammatory cytokines after activation in vitro compared with wild-type (WT) control splenocytes. However, in contrast to complete IL-10 deficiency, sensitivity to endotoxins, shock, and skin responses from the skin in the T-specific IL-10-deficient mice was not greater than those of the WT controls. A critical role of B cell-derived IL-10 has been demonstrated in the mouse model of experimental autoimmune encephalomyelitis (EAE). Mice with a disruption in the Ig µ heavy chain (µMT), which results in a lack of B cells, develop a non-remitting form of EAE. Transfer of WT B cells restores remission, whereas B lymphocytes from IL-10-deficient mice were unable to suppress the disease progression. Together, these studies highlight the distinctiveness of IL-10 derived from different cellular origins that determines its unique range of activities.

Regulation of interleukin-10 production

IL-10 production by macrophages and DCs through pathogen-associated molecular patterns (PAMPs) has been most widely studied. Macrophages produce IL-10 as a consequence of the recognition of PAMPs by its PRRs. Several classes of PRRs are expressed by macrophages, including TLRs, C-type lectin receptors, RIG-1 (retinoic acid-inducible gene 1) receptors, and NOD-like receptors. The PAMPs bind to the TLRs with its TLR-interacting (TIR) domain, initiating signaling into macrophages with the help of intracellular adaptors that lead to the activation of multiple members of the MAPKs and subsequently transcription factors Sp1, C/EBPβ, and δ, c-Maf, Nfkb, and phosphorylated cyclic AMP element-binding protein (CREB). TLRs can also act in synergy with other agonists such as IL-4, IL-13, and PGE2 to augment IL-10 production. TLR3 or TLR4 activation results in the production of IFNβ, which sets up a feedback loop to sustain IL-10 mRNA induction.

B cells express a number of TLRs. Agonists that act via TLR2, TLR4, or TLR9 have all been shown to promote IL-10 production. TLR9 activation in B cells stimulates activation of Bruton’s tyrosine kinase (Btk), and B cells from Btk knockout mice fail to secrete IL-10 following TLR9 stimulation. However, the molecular mechanism downstream of Btk is not clear. The role of Btk is not restricted to B cells, as Btk-deficient macrophages also secrete less IL-10 than WT cells.

CD4+ T cells have been identified as an important source of IL-10 in vivo. Various transcription factors have been reported to induce IL-10 in T cells, including Sp1, c-Jun, c-Maf, SMAD4, GATA3, and STATs. However, the molecular signaling pathways that regulate IL-10 induction have not been fully delineated. The studies in this area have been complicated by the existence of multiple TH cell subsets, many of which can produce IL-10, including TH1, TH2, TH17, and Treg cells, albeit with different capacities. These observations have prompted the hypothesis that the IL-10 locus becomes differentially modified during TH cell polarization, which then invokes subtly different molecular mechanisms that drive IL-10 transcription in a quantitatively variable manner in the various T-cell subtypes.

In contrast to the host response to infectious agents, clearance of apoptotic cells of a self-nature by phagocytes results predominantly in anti-inflammatory reactions characterized by the production of immunoregulatory cytokines IL-10, PGE2, and transforming growth factor beta (TGFβ), which are critical to ensuring cellular homeostasis and suppression of autoimmunity as an evolutionarily well-conserved mechanism. Chung et al. reported that the production of IL-10 in response to apoptotic cells is dependent on CD36, p38 MAPK, and the transcription factor TALE homeoprotein Pre-B-cell leukemia homeobox 1 (Pbx1). The study establishes a novel role of a developmentally critical factor in the regulation of homeostasis in the immune system and opens up a new area for future exploration at the intersection between cellular homeostasis and immune responses to exogenous pathogens as well as to endogenous danger signals.

Regulation of interleukin-12 production by interleukin-10

The potency of IL-12 in host defense makes it a target for stringent regulation. Indeed, the temporal, spatial, and quantitative expression of IL-12 during an immune response in a microenvironment contributes critically to the determination of the type, extent, and ultimate resolution of the reaction. Breaching of the delicate control and balance frequently leads to immunologic disorders and pathogenesis. One of the most important and well-studied negative regulators of TLR-induced IL-12 production is IL-10. IL-10 suppression of both IL12a and IL12b genes is seen primarily at the transcriptional level, and the inductions of the two genes have different requirements for de novo protein synthesis. How IL-10 suppresses Il12a transcription is unknown at present. IL-10 targets an enhancer 10 kb upstream of the Il12b transcriptional start site that is bound by nuclear factor, interleukin 3-regulated (Nfil3), a B-ZIP transcription factor. Myeloid cells lacking Nfil3 produce excessive IL-12p40 and increased IL-12p70. Thus, the STAT3-dependent expression of Nfil3 is a key component of a negative feedback pathway in myeloid cells that suppresses pro-inflammatory responses.

Kobayashi et al. observed that acetylated histone H4 transiently associated with the Il12b promoter in WT bone marrow-derived macrophages (BMDMs), whereas association of these factors was prolonged in Il10−/− BMDMs. Experiments using histone deacetylase (HDAC) inhibitors and HDAC3 short hairpin RNA indicate that HDAC3 is involved in histone deacetylation of the Il12b promoter by IL-10. These results suggest that histone deacetylation on the Il12b promoter by HDAC3 mediates the homeostatic effect of IL-10 in macrophages. More details clearly need to be worked out to understand the important homeostatic regulation of IL-12 production by IL-10. In this context, the IL-4-inducing transcription factor c-Maf is an interesting molecule that can directly and conversely regulate IL-12 and IL-10 gene expression in activated macrophages. Conversely, IRF-5 is a driver of the “M1” polarization of macrophages promoting TH1 and TH17 activities with activated transcription of inflammatory genes, including Il12a, Il12b, and Il23a, and repressed Il10 transcription.

Interleukin-12 in adoptive cell therapy for cancer

IL-12 is able to activate all major cytotoxic killer and helper cell types of the immune apparatus (NK, NKT, CD4+, and CD8+ T cells) that are crucially important for immunosurveillance of and resistance
to cancer development and progression\(^9\). The extraordinary anti-tumor efficacy of IL-12 has been demonstrated in animal models of cancer of diverse types\(^{104-105}\), and its use in various forms is now involved in a large number of human cancer clinical trials\(^{106}\). Adaptive cell therapy of malignant diseases takes advantage of the cellular immune system to recognize specific tumor-associated antigens and destroy cancer cells. This is remarkably demonstrated by redirecting T cells with a chimeric antigen receptor (CAR) toward CD19, inducing complete remission of leukemia in more than two thirds of patients in early-phase trials\(^{107}\). After initial tumor reduction by CAR T cells, antigen-negative cancer cells not recognized by CAR may give rise to tumor relapse. Fortunately, the “quagmire” may be overcome by CAR-mediated activation of T cells in the tumor, releasing inducible IL-12, which augments T-cell activation and attracts and activates innate immune cells to eliminate antigen-negative cancer cells in the targeted lesion. Chmielewski et al. demonstrated the feasibility of this strategy by redirecting T cells with a carcinomaembryonic antigen (CEA)-targeting CAR and engineering with the inducible recombimant IL-12 expression cassette under the control of the NFAT/IL-2 minimal promoter\(^{108}\). In this context, IL-12 release was triggered by CAR signaling upon tumor antigen recognition and no IL-12 was detected \emph{in vitro} without CAR signaling. The production capacity of such modified CAR T cells was sufficient to reach therapeutic levels without the need of repetitive drug application\(^{109}\). The therapeutic advantage is indicated by the fact that a dose of \(10^7\) IL-12 modified tumor-specific CAR T cells was more effective against established tumors than \(10^6\) T cells without IL-12 in a pre-clinical model\(^{110}\).

To date, despite the enhanced anti-tumor efficacy of IL-12-secreting CAR T cells in this model, the mechanisms associated with this enhanced tumor eradication remain unclear. Previous work showed that IL-12 reversed Treg cell-mediated suppression of CD4\(^+\) Foxp3\(^-\) T-cell proliferation\(^{111}\). IL-12 was shown to induce IFN-\(\gamma\) production by Treg cells \emph{in vitro} and \emph{in vivo}\(^{12,13}\). However, IFN-\(\gamma\) expression did not decrease the ability of Treg cells to suppress T-cell proliferation\(^{114}\). Rather, IL-12 treatment decreased Treg cell frequency and Foxp3 levels in Treg cells. Furthermore, IL-12 increased IL-2R expression on effector CD4\(^+\) and CD8\(^+\) T cells, diminished its expression on Treg cells, and decreased IL-2 production by CD4\(^+\) and CD8\(^+\) T effectors. Together, these IL-12-mediated changes favored the outgrowth of non-Treg cells\(^{114}\). Kerkar et al. demonstrated that engineering tumor-specific CD8\(^+\) T cells to secrete IL-12 improved their therapeutic efficacy in the B16 mouse model of established melanoma\(^{115}\). Surprisingly, direct binding of IL-12 to receptors on lymphocytes or NK cells was not required. Instead, IL-12 sensitized bone marrow-derived tumor stromal cells, including CD11b\(^+\)F4/80\(^+\) macrophages, CD11b\(^+\)MHCII\(^-\)CD11c\(^-\) DCs, and CD11b\(^+\)Gr-1\(^+\) MDSCs, causing them to enhance the effects of adoptively transferred CD8\(^+\) T cells. This reprogramming of myeloid-derived cells occurred partly through IFN-\(\gamma\) MHC I expression on host cells was essential for IL-12-mediated anti-tumor enhancements\(^{115}\). These studies point to the potential immunological mechanisms of the T cell-secreted IL-12 in tumor models.

Based on prior pre-clinical studies demonstrating that IL-12-secretting CAR T cells are protected from inhibition by endogenous Treg cells (unpublished results), it is conceivable that IL-12-producing CAR T cells may be refractory to Treg cell-mediated inhibition and that previously requisite CAR-mediated T-cell “co-stimulation” (through CD28 or CD40L) may be overcome by CAR T cell-derived IL-12 secretion. In other words, CAR T cell-derived IL-12 may render the effectors independent of the “second signal” requirement “engraved” in classic T-cell activation paradigms. Furthermore, it is possible that IL-12 secretion within the tumor microenvironment can reverse the anergic state of endogenous tumor-infiltrating lymphocytes (TILs) and blunt the immune suppression by myeloid-derived suppressor cells (MDSCs) as well as modulation of the tumor-associated macrophages (TAMs) from a suppressive M2 phenotype to a pro-inflammatory M1 phenotype\(^{116-119}\).

Future perspectives

IL-10 is a pleiotropic cytokine with a strong role in limiting the scope and extent of immune activation. Loss of IL-10 function has deleterious effects. Therefore, IL-10 could be a potential therapeutic agent for many inflammatory or autoimmune disorders. However, systemic IL-10 administration has proven to be of limited value\(^{10}\) and this indicates that IL-10 production would need to be carefully targeted to be efficacious therapeutically. This is evidenced by adoptive transfers of specific types of IL-10-producing immune cells in some autoimmune disease models that result in protection against the development of inflammatory pathologies\(^{120-127}\). Thus, a far more comprehensive and precise understanding of which IL-10-producing cells are important \emph{in vivo}, and what the critical target cells of this IL-10 are would be instrumental in the future development of the therapeutic potentials of IL-10. The increased use of conditional gene targeting in mice will help in these future studies\(^{10}\).

In the intestinal mucosa, IL-10 is a well-established regulator of tissue inflammation and homeostasis. Mutations in the NOD2 gene are strongly associated with Crohn’s disease, a form of IBD believed to be driven by uncontrolled Th1 and Th17 responses\(^{128}\). There has been long a debate on the nature of the IBD-associated NOD2 mutations: “loss of function” or “gain of function”? Noguchi et al. showed that a common disease-related NOD2 mutation, 3020insC, displayed a “gain of function” property in that it suppressed IL10 transcription by blocking the phosphorylation of the nuclear ribonucleoprotein hnRNP-A1 (heterogeneous nuclear ribonucleoprotein A1) via the p38 MAPK\(^{129}\). This effect of 3020insC appears to be unique on the human IL-10 gene but not on its murine counterpart. The study challenges the present paradigms about the influence of the 3020insC mutation on Crohn’s disease, cautioning against deriving conclusions about the human disease on the basis of data from NOD2 knockout mice. It may provide a novel way of thinking about efforts to identify therapeutic targets for the treatment of Crohn’s disease and other Th1/Th17-mediated autoimmune diseases associated with the 3020insC mutation.

Although a tremendous amount of knowledge has been gained about the signaling and function of IL-12 in immune cells since its discovery in 1989, many important questions remain. It is widely believed that the majority of the immunological activities of IL-12 are mediated through IFN-\(\gamma\) produced by activated NK and Th1 cells that have been exposed to APC-derived IL-12. However, considerable levels of IFN-\(\gamma\)-independent activities of IL-12 have
been reported in many infectious disease and cancer models130–136. The cellular and molecular basis of the non-canonical activities of IL-12 await further elucidation. In immunotherapy of cancers, it has been long noted that the repeated administration of recombinant IL-12 could contribute to increased immunosuppressive properties of the tumor by the induction of IL-10137–139. Although the underlying molecular mechanism for the negative feedback is lacking, the finding that IL-12 is capable of potently inducing its own inhibitor reiterates the concept that the immune system is inherently equipped with an intrinsic negative feedback device that limits ongoing T-cell activation. This also indicates that the kinetics of T-cell responses may be regulated by the ratio of IL-12 and IL-10 levels, which may gradually decline during the immune response.

Endotoxin tolerance, the transient, secondary downregulation of a subset of endotoxin-driven responses after exposure to bacterial products, is thought to be an adaptive response providing protection from pathological hyperactivation of the innate immune system during bacterial infection. IL-12 production is subjected to such a control mechanism. Wysocka et al. examined the development of IL-12 suppression during endotoxin tolerance in mice. The basis for decreased IL-12 production \textit{in vivo} is clearly multifactorial, involving both loss of CD11chigh DCs as well as alterations in the responsiveness of macrophages and remaining splenic DCs. There is no demonstrable mechanistic role for B or T lymphocytes, the soluble mediators IL-10, TNF-α, IFN-α/β, nitric oxide, or the NFκB family members p50, p52, or RelB140. To date, the tolerance mechanism that inhibits IL-12 production by APCs remains elusive. The need for the understanding is underscored by the frequent occurrence of “immunological paralysis” subsequent to septic shock in patients. In the broad context, Foster et al. have provided some major insights into this phenomenon by proposing a model for the gene-specific regulation of class “T” (for tolerant) and “NT” (for non-tolerant) genes mainly through preferential transcription factor recruitment, histone acetylation, H3K4 trimethylation, and chromatin remodeling in tolerant versus non-tolerant macrophages141.

The acute-phase proteins, C-reactive protein and serum amyloid A (SAA), are biomarkers of infection and inflammation. He et al. reported a novel property of SAA in the differential induction of IL-12 and IL-23 in human peripheral blood monocytes142. SAA-induced IL-12p40 production was accompanied by a sustained expression of IL-23p19, but not IL-12p35, resulting in preferential secretion of IL-23, but not IL-12. The study identified SAA as a novel endogenous ligand that potentially activates the IL-23/IL-17 pathway, representing a novel mechanism for regulation of inflammation and immunity by an acute-phase protein. The differential production of IL-12 versus IL-23 was also observed in myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) stimulated via TLR ligands. Only mDCs but not pDCs secreted IL-23. Although pDCs produced both mRNA and protein of the p40 subunit, the lack of bioactive heterodimeric IL-23 protein release was due to the absence of translation of the p19 mRNA into protein143. These findings support the hypothesis of a coordinated adaptive immune response based on a finely tuned contribution of these cytokines by different DC subsets. How these endogenous and exogenous ligands induce IL-12 and IL-23 differentially at the molecular level bears both great scientific interests and practical implications.

The immunological activities of IL-12 are further complicated by the existence of IL-12p40 homodimer, IL-12p80, which acts as an IL-12 antagonist by binding to the IL-12R but which does not mediate a biological response144,145. Secretion of IL-12 is associated with excess production of IL-12p80146. For example, in contrast to the dogma about the restrictive nature of IL-12-producing cell types, meaningful amounts of IL-12p40 monomer and IL-12p80 have been observed in human breast cancer cells147, which could potentially thwart the IL-12-induced anti-tumor responses \textit{in vivo}. Approximately 20% to 40% of the p40 in the serum of normal and endotoxin-treated mice is in the form of IL-12p80147. In IL-12-dependent shock models, exogenous IL-12p80 inhibits IL-12-induced cell-mediated immune response and protects mice from sepsis-associated death148. However, IL-12p80 has also been reported to stimulate, rather than inhibit, the differentiation of CD8+ Tc1 (type 1 cytotoxic T) cells \textit{in vitro}, contrary to its suppressive activity on Th1 function149. The divergent functions of the various forms of p40 highlight our lack of full appreciation of its true range of biological activities.

Recent pre-clinical studies demonstrated that treatment with CD19-specific, CAR T cells that secrete IL-12 is able to safely eradicate established disease without the sophisticated and laborious prior conditioning of subjects150. Moreover, in severe combined immunodeficient (SCID)-Beige mice with human ovarian cancer xenografts, IL-12-secreting CAR T cells exhibited enhanced anti-tumor efficacy as determined by an increased survival rate, prolonged persistence of T cells, a higher level of systemic IFN-γ, and modulated tumor microenvironment151. How the locally released IL-12 contributes to the highly favorable clinical efficacy and immunological modifications to numerous cell types in the tumor environment is an urgent and challenging task for the benefit of further improving this revolutionary therapeutic strategy for cancers of diverse types and progression states.

In summary, the complexity of the heterodimeric nature of both the cytokines and their receptors in the IL-12 family (also including IL-27) associated with the activation of different combinations of tyrosine kinases and STATs underlies the overlapping as well as distinct immunological consequences of the regulation and signaling in this cytokine group. Greater efforts are called for to better decipher the intricacies. In the meantime, more caution is needed in interpreting data derived from studies of individual cytokine or receptor chains.

\section*{Competing interests}
The authors declare that they have no competing interests.

\section*{Grant information}
This work was supported in part by a grant from the Natural Science Foundation of China (31370903) to XM and by a grant from the National Institutes of Health of the US (1R21AI101841-01) to XM.

\textit{The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.}
References

Open Peer Review

Current Referee Status: ✔ ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1 Tadamitsu Kishimoto, Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
 Competing Interests: No competing interests were disclosed.

2 Stanislas Goriely, WELBIO and Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
 Competing Interests: No competing interests were disclosed.

3 Raymond P. Donnelly, Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
 Competing Interests: No competing interests were disclosed.