Abstract
The Internet of Things (IoT) is leading the physical and digital world of technology to converge. Real-time and massive scale connections produce a large amount of versatile data, where Big Data comes into the picture. Big Data refers to large, diverse sets of information with dimensions that go beyond the capabilities of widely used database management systems, or standard data processing software tools to manage within a given limit. Almost every big dataset is dirty and may contain missing data, mistyping, inaccuracies, and many more issues that impact Big Data analytics performances. One of the biggest challenges in Big Data analytics is to discover and repair dirty data; failure to do this can lead to inaccurate analytics results and unpredictable conclusions. We experimented with different missing value imputation techniques and compared machine learning (ML) model performances with different imputation methods. We propose a hybrid model for missing value imputation combining ML and sample-based statistical techniques. Furthermore, we continued with the best missing value imputed dataset, chosen based on ML model performance for feature engineering and hyperparameter tuning. We used k-means clustering and principal component analysis. Accuracy, the evaluated outcome, improved dramatically and proved that the XGBoost model gives very high accuracy at around 0.125 root mean squared logarithmic error (RMSLE). To overcome overfitting, we used K-fold cross-validation.

Keywords
IoT, Big Data Analytics, Data Cleaning, Data Imputation, Feature Engineering
Corresponding author: Shohel Sayeed (shohel.sayeed@mmu.edu.my)

Author roles: Sayeed S: Conceptualization, Methodology, Supervision, Writing – Review & Editing; Ahmad AF: Conceptualization, Methodology, Validation, Visualization, Writing – Original Draft Preparation; Peng TC: Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2022 Sayeed S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Sayeed S, Ahmad AF and Peng TC. Smartic: A smart tool for Big Data analytics and IoT [version 1; peer review: awaiting peer review] F1000Research 2022, 11:17 https://doi.org/10.12688/f1000research.73613.1

First published: 07 Jan 2022, 11:17 https://doi.org/10.12688/f1000research.73613.1
Introduction
The Internet of Things (IoT) is reshaping communication with technologies and is becoming a vital part of the development of a smart environment dedicated to make our lives convenient and comfortable. Several IoT application sectors like smart homes, smart cities, smart healthcare, assisted driving, smart retail, and consumer goods like wearables and smartphones are already available. IoT is built with electronics hardware, software, and connectivity, which enables device interaction and transfer of data. The IoT ecosystem generates massive amounts of data. This data could be analyzed to make business decisions, predict consumer behavior, or to bring solutions to problems that might exist. Big Data offers the solutions to handle various types of data on a large scale.

Big Data extends the possibility to conduct extensive and rich analyses utilizing a vast amount of data. Standard data processing tools are limited in data management capacity, where Big Data goes beyond the capabilities of traditional database management systems (DBMS). Big Data comprises a large volume of information that is complex (structured and unstructured) in nature. Data are often being generated in real-time and can be of uncertain provenance. New Big Data technologies are being developed to meet the demands for processing massive amounts of heterogeneous data. Big Data management benefits are significant and sometimes far-reaching, and many companies have started operating with Big Data to translate a large amount of data into valuable insights.

The bulky and heterogeneous nature of Big Data requires investigation using Big Data Analytics (BDA). These data will yield meaningful outcomes by using methods of dissection in BDA, which help to discover concealed patterns, anonymous relationships, trends of the current market situation, consumer preferences and other aspects of data that can assist institutes and companies to make up to date, faster and better decisions for their business. However, the biggest issue with available datasets is the data quality itself. The data quality issues differ depending on the data source; they could be duplicated records, spelling errors or more complex issues relating to unit misuse. A mixture of clean and dirty records in data can mislead to the well-known Simpsons Paradox in which a pattern appears in a particular dataset but disappears or reverses when datasets are combined. A mixture of dirty and clean data could poorly fit an ML model; Figure 1 shows the different ML models fitting with different sets of mixed data. This would lead to unreliable analysis results. Hence, data pre-processing is an important factor in the data analysis process.

To make the data suitable for analysis we must clean it. Identifying dirty records and cleaning data sometimes require manual data inspection, which is time-consuming and can be costly. Pre-processing includes several steps, for example, (1) loading the data from the file, (2) cleaning it to fix inconsistencies or errors, (3) encoding the numeric and categorical data types, and finally, (4) the missing value imputation. Missing values can be handled in different ways. Columns or rows containing missing values can be dropped or a value can be imputed in each cell with a missing or improper value. Sometimes, crowdsourcing is used to correct some types of errors, which costs a significant amount of time and human-level works. Some researchers have used statistical computing such as mean, median, sum, among others, and approximate query processing to pre-process data. Some researchers have used sample-based cleaning techniques which can gradually improve data quality. Machine learning is an expanding research area, and is being used in some cases of data cleaning. We propose a hybrid model of the data pre-processing technique called Smartic, which is the combination of sample-based statistical techniques and ML. While sample-based statistical techniques lead to faster execution, ML models provide great accuracy. Our research contribution on Smartic will mitigate challenges related to dirty data cleaning and imputing missing values with better performance accuracy, within a reasonable time frame.

In this paper we present a tool for IoT data preparation and BDA with ML. After data pre-processing, we carried out some feature engineering. This consists in checking which features are highly informative and which are less informative, and then considering features for the analytic purpose. Highly informative features will usually have the most benefits during

Figure 1. Simpsons Paradox.
feature development, while uninformative features can lead to overfitting. The main sections of this study are listed below:

- A review of the recent literature
- Presentation of a BDA framework
- Discussion of the data preparation issues and solution
- Presentation of techniques to improve analysis performance
- Comparison of different solutions and discussion of the results
- Conclusions and future research directions

Related work
Ahmad et al. reviewed the recent literature on IoT and BDA. Massive data production in IoT environments, and the versatile nature of the data, make Big Data a suitable solution for IoT systems. They discussed the opportunities for organizations to get valuable insights about their customers and help predict upcoming trends. BDA and ML tools like classification, clustering and predictive modeling, provide data mining solutions that create many more opportunities to expose variability, improve decision-making habits and boost performance. Cross-domain data gathered from different IoT appliances can be fed into BDA that can provide efficient solutions for different domains.

To overcome the challenges of collecting, processing, and examining the massive-scale, real-time data produced by smart homes, Bashir and Gill offered an analytical framework composed of IoT, Big Data administration, and data analytics. The purpose of data analytics in their study was to automatically maintain the oxygen level consistency, detect hazardous gases or smoke, and control light conditions or quality. The work scheme was executed in the Cloudera Hadoop distribution platform, where PySpark was used for big data analysis. The outcomes revealed that the proposed scheme could be used for smart building management with BDA.

Idrees et al. proposed a two-step data cleaning method, using Big Data on a network of IoT wireless sensor devices. They attempted to minimize communication cost, save energy, and expand the lifespan of sensors by cleaning and reducing the redundant data. Their proposed two-level data reduction and cleaning approach in IoT wireless sensor networks includes a sensor level and an aggregator level. The aggregator level merged a near-similar data sets by implementing a divide and conquer technique. The reduced data sets were retransmitted to the sink, then the leader cluster algorithm-based cleaning method was applied to remove redundant data.

Salloum et al. proposed a Random Sample Partition (RSP) Explore technique, to explore Big Data iteratively on small computing clusters. Their work included three main tasks: statistical estimation, error detection, and data cleaning. They partitioned the entire data into ready-to-use RSP blocks using an RSP-distributed data model. To get samples of clean data, they used block-level samples to understand the data and detect any potential value errors. Their experimental results showed that a sample RSP block cleaning is enough to get an estimation of the statistical properties of any dataset, and the approximate results from RSP-Explore can rapidly converge toward the true values.

García-Gil et al. worked on data pre-processing to transform raw data into high-quality, clean data. The quality of the data used in any knowledge discovery process directly impacts the output. They experimented with classification problems due to the presence of noise affecting data quality, particularly a very disruptive feature of data known as incorrect labelling of training dataset. They proposed two Big Data pre-processing techniques with a special emphasis on their scalability and performance traits. The filters they used to remove noisy data were a homogeneous ensemble and a heterogeneous ensemble filter. The results from their experiments show that anyone can retain a smart dataset efficiently from any Big Data classification problem using these proposed filters.

Snineh et al. proposed a solution that can be performed in real time to handle the frequent errors of Big Data flows. They proposed a repository for each given domain in their two-step model to store the metadata, cleaning and correction algorithms, and an error log. An advisor was appointed to supervise the system for the first step. The advisor could estimate the algorithm corresponding to error cleaning for a given context. At the second step, the system became autonomous in the selection algorithm procedure based on its learning module. That capability was obtained by using a
strategy pattern-based approach. The pattern allowed the building of a family of algorithms, which are interchangeable and evolve independently of the context of use.

Jesmeen et al.23 presented a comparison between currently used algorithms and their proposed tool, Auto-CDD, to handle missing values. The developed system improved overall data processing and guaranteed to overcome processing unwanted outcomes in data analysis. Their intelligent tool used Gini index values of random forest for feature selection. Experimental evaluation results showed that the random forest classifier led to a high accuracy on a diabetes dataset from UCI.24 They also imputed the missing values on a student database and performed logistic regression analysis on students’ performance.

Shah et al.25 investigated the research gaps in understanding Big Data characteristics generated by industrial IoT sensors, and studied the challenges to processing data analytics. They studied the characteristics of the Big Data generated from an in-house developed IoT-enabled manufacturing testbed. They explored the role of feature engineering for predicting the key process variables in effective machine learning models. The comparison with different levels or extent of feature engineering in between simple statistical learning approaches and complex deep learning approaches, shows potential for industrial IoT-enabled manufacturing applications.

El-Hasnony et al.26 presented challenges in building an optimal feature selection model for Big Data applications, due to the complexity and high dimensionality of the data sets. They used particle swarm optimization and grey wolf optimization to build a new binary variant of a wrapper feature selection. The optimal solution was found with the help of the K-nearest neighbour classifier and Euclidean separation matrices. The overfitting issue was checked using K-fold cross-validation, and the performance and the effectiveness of the model were validated by conducting statistical analyses.

Big data analytics

BDA follows some steps towards getting meaningful insights. Data analytics start with a non-trivial step of problem definition and evaluation. Research on expected gains and costs for reasonable solutions is needed. Generally, a data analytics framework is defined by five main steps:

Data acquisition

Data acquisition, the key to the data life cycle, defines the data product profile. At this stage, structured and unstructured data are gathered from different sources and different types of unstructured or dirty data are pre-processed. Short data loading times are crucial for BDA due to its naturally exponential growth rate.

Data mining and cleansing

The most essential stage of processing Big Data is to implement a method to extract the necessary data from the loaded, un-structured Big Data. A data analyst spends the most time on cleaning dirty data. Analysing dirty data could lead to erroneous results. To get high-quality data, faulty records, duplicates, unwanted records, and outliers need to be removed. Typos must be fixed and the data requires structuring. An exploratory analysis could investigate the initial characteristics of data and helps refining the hypothesis.

Data aggregation and integration

The cleaned data obtained needs to be aggregated for processing numerical and categorical types of data, followed by data integration. Different types of data in various shapes and sizes obtained from different sources need to be integrated to prepare for analysis. To unify some data features, we may need to convert between formats. For example, one source collecting ratings on a five-star scale, and another source collecting data as “up” and “down” vote only. The response variable could be,

\[y \in \{1, 2, 3, 4, 5\} \]

and

\[y \in \{\text{positive, negative}\} \]

Before integrating both source data, we need to make an equivalent response representation, possibly by converting the first source to the second representation format, considering three stars and above as the positive ratings and the rest of them as the negative ratings. Properly integrated data becomes less complex, more centralized and more valuable.
Data analysis and modelling
From the perspective of Big Data, the goal is to produce meaningful insights that will be invaluable for business, through the analysis of data which may fluctuate depending on analytics technique and data types. Reports investigating the data must be constructed to help the business for better and faster decision-making.

Data interpretation
Data interpretation allows to present data in an understandable format for users, for example, presenting data using analysis and modelling results to make decisions by interpreting the outcomes and extracting knowledge. Data interpretation queries are categorized together and indicate the same table, diagram graph or other data demonstration options.

Proposed method
Data collection and storage
We collected data from the UCI repository\(^2\) and from publicly available datasets in the Kaggle database.\(^2\) We stored these datasets on Kaggle’s server and worked on these data on the database’s kernels. All collected datasets were in CSV (Comma-separated values) format.

Data preprocessing
Data preprocessing is an important phase of data analysis. Raw data is manipulated to make it understandable. This is carried out in several steps, such as cleaning, encoding, imputing, among others. We handled these steps separately.

Data cleaning
For this step, we tried to fix any errors and remove inconsistency. We fixed typos and different representations for any values in a common representation. We used fuzzy matching or edit distance algorithms to remove inconsistency. Outlier detection and removal help to get better accuracy. Figure 2 shows summary statistics (number summary) to represent data, such as minimum, maximum, median, quartiles (Q1, Q3). The first quartile (Q1) is the middle value between the smallest value and the median (or the 50th percentile, or Q2) of the dataset. A 25% portion of values in the dataset resides below the first quartile.

\[
\text{Interquartile Range, IQR} = Q_3 - Q_1
\]

minimum = \(Q_1 - 1.5 \times IQR\)

maximum = \(Q_3 + 1.5 \times IQR\)

IQR, or midspread, or middle 50%, is the statistical dispersion equal to the range from lower quartile (25th percentile) to the upper quartile (75th percentile). The values that do not reside within the range of the minimum and maximum value are defined as outliers (Figure 2).

Data encoding
We prepared statistical data values in numerical and categorical values. The standard statistical types such as numeric and categorical had similar representations in Pandas\(^2\) and Python (version 3.10). To treat each feature correctly, we

Figure 2. Outlier detection.\(\text{ }^{28}\)
encoded each column as its respective type of data, which helps to apply transformation consistency in further analytical processes.

Imputation

We fixed the missing values in this step. We used 0 as the default value for missing numeric data and ‘None’ as the default value for missing categorical data. We used different techniques to impute missing values and train the machine learning model by feeding these imputed datasets. Based on the model performances, we chose the best imputation technique and used it for further analytical process. The implemented algorithmic steps were as follow:

Step 1: Retrieve sample clean dataset ($Dataset_{clean}$) from the original dataset, excluding missing/incomplete values as much as possible.

Step 2: Order Features ($Features_o$) based on feature utility scores or mutual scores.

Step 3: Select top features from $Features_o$ and apply step 5.

Step 4: Select the rest of the features from $Features_o$ and apply step 6.

Step 5: For a given feature F_i: label F_i as the target and the rest of the column in $Dataset_{clean}$ as features, and train the ML model to obtain missing or incomplete values for the original dataset.

Step 6: For a given feature F_i: calculate statistical parameters (mean or median) of the F_i column in $Dataset_{clean}$, and obtain missing or incomplete values for the original dataset.

Feature engineering

We used mutual information (Figure 3) to determine the importance of a feature. For this step, we created new features as well. We used target encoding for categorical features with higher cardinality. Target encoding involves replacing a categorical feature with the average target value of all data points for that category. We used several other techniques of feature engineering for this purpose.

Feature utility scores

Using mutual score is a great way to determine a feature’s potential. Feature utility scores help to determine important features and non-important ones as well. Based on scores, we discarded some features for a performance gain.

Feature creation and transformation

Label encoding can be done to transform categorical features, as we are focusing on the tree-ensemble model; this works for both ordered and unordered data categories. Creating new features can be done in several ways such as, taking the product of two numerical features, the square root of a feature, normalize by applying logarithms, determining the group statistics of a feature, etc.

Figure 3. Feature utility scores of house prices dataset.

K-means clustering
The unsupervised algorithm k-means clustering can be used to create features as well. Cluster labels or the distance of each entity to each cluster can be used as features. Sometimes, these help to untangle complicated relationships between features, engineered features or targets.

Principal component analysis (PCA)
We can use another unsupervised principal component analysis (PCA) model for feature creation, which can decompose a variational structure. The PCA algorithm gave us loadings which described each component of a variation, and the components which were the transformed datapoints. The loadings can suggest features to create and the components we can directly use as features. Clustering can be done using one or more components.

Target encoding
It is an encoding of categorical into numeric values derived from the target. It resembles a supervised feature engineering technique. We used mean and median values for this purpose.

Hyperparameter tuning
A great way of boosting performance is carrying out hyperparameter tuning. For our ML model XGBoost, we set max_depth to 6, learning_rate to 0.01, n_estimators to 1000.

Evaluation criteria
We adopted the K-fold cross-validation for performance evaluation. Cross-validation divided the data set into training and a testing data set to train the model and test its performance using two distinct data sets. Training and testing on the same data create overfitting issues. To avoid this, we used K-fold cross-validation with a value of 5 for K (Figure 4). All our experimental results were five-fold cross-validated.

The XGBoost model performance was evaluated using the root mean squared logarithmic error (RMSLE) metric. The formula for RMSLE is represented as follows:

$$
\text{RMSLE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log (p_i + 1) - \log (a_i + 1))^2}
$$

Where:

- n is the number of observations in the dataset
- p_i is the prediction of target
- a_i is the actual target for i.

log(x) is the natural logarithm of x ($\log_e(x)$).

![Figure 4. K-fold cross-validation (K=5).](image-url)
Experiments

Discarding missing values
Discarding columns or rows is a technique for handling missing values. Our model performance in RMSLE was 0.14249 after discarding columns with missing values.

Missing value imputation
We evaluated our XGBoost model using datasets with imputed missing values using different types of imputation techniques. When we filled non-muerial (NAN, not a number) values with a 0, we obtained an RMSLE score of 0.14351.

![Figure 5. RMSLE metric score in different stage of analytics.](image_url)

![Figure 6. (a) Performance measurement of different techniques of missing value imputation. (b) Closer view of the best imputation techniques.](image_url)
while when filling missing values with the next valid value on the same column, we obtained a score of 0.14348. If we use the statistical mean of a feature column to impute missing values in that column, we notice a performance increment with an RMSLE score of 0.14157.

Feature engineering
As we carried out feature transformation and target encoding based on feature utility scores, we yielded better performances. The use of K-means clustering and PCA led to a better performance as well. We obtained a value of 0.14044 for the RMSLE score.

Hyperparameter tuning
Hyperparameter tuning gave a performance boost in the final performance evaluation. Figure 5 shows the performance improvements after feature engineering and hyperparameter tuning. After fine-tuning some parameters, we obtained our highest RMSLE score with 0.12426.

Results and discussion
We calculated the mean RMSLE value of five trials of train/test splits while varying the training dataset size from 0.1 to 0.9 (10% to 90%). In Figure 6(b), we notice that the ML-based missing value imputation technique outperformed all other traditional imputation methods. Imputing 0 in place of the missing value performed worst in our experiment (see Figure 6a). Replacing missing values of any feature column with the median of that column performed slightly better than imputing the mean of that feature column.

As the ML-based imputation technique outperformed state-of-the-art baseline methods, we evaluated missing value imputation performance of different ML models, such as LinearRegression, DecisionTreeRegressor, LinearSVR, GaussianNB, BaggingRegressor, KNeighborsRegressor, AdaBoostRegressor, XGBRegressor, among others. Although all ML models delivered higher accuracy with the continuous increment of training dataset size, we saw (Figure 7) more uniform and sheer increasing patterns in XGBRegressor and BaggingRegressor models. It proves that with sufficiently large datasets, the XGBRegressor model can outperform the other ML methods. In addition, we noticed that the XGBRegressor model showed a more stable performance with the varying training data size.

Conclusion
Almost every data set available may contain missing values, which are essential to analyze and understand the data. Dealing with these types of dirty data is difficult, and getting a robust analytical ML models is more challenging. We used statistical methods equipped to fix the datasets, and the sample-based approximate query processing was integrated to alleviate errors in analysis and predictions. The data fixed using different imputation techniques were fed into ML analytical models, and accuracy was compared against different data preparation techniques. Smartic’s data value
imputation was faster than the ML-based missing value imputation model. The ML model, trained on data cleaned using a sample-based technique, showed a significantly better and more stable performance. In the future, evaluation can be done with data collected directly from IoT environments in real time.

Data availability

Underlying data
- Ames housing dataset: house sales data in Ames, Iowa between 2006 and 2010. Compiled by Dean De Cock; used for educational purposes. We used a version of that dataset available at https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

Extended data

Analysis code available from: https://github.com/FuadAhmad/smartic

Archived analysis code at time of publication: https://zenodo.org/badge/latestdoi/420156995

License: (must be open access) Apache-2.0 License

References

18. PySpark Documentation. Reference Source
25. Shah D, Wang J, He QP: Feature engineering in big data analytics for IoT-enabled smart manufacturing - Comparison between...

29. pandas: Reference Source
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com