Crystal structure of *Pseudomonas aeruginosa* FabB C161A, a template for structure-based design for new antibiotics

Vladyslav Yadrykhins'ky, Charis Georgiou, Ruth Brenk

Department of Biomedicine, University of Bergen, Bergen, 5020, Norway

First published: 01 Nov 2021, 10(Chem Inf Sci):1102

https://doi.org/10.12688/f1000research.74018.1

Latest published: 01 Nov 2021, 10(Chem Inf Sci):1102

https://doi.org/10.12688/f1000research.74018.1

Abstract

Background: FabB (3-oxoacyl-[acyl-carrier-protein] synthase 1) is part of the fatty acid synthesis II pathway found in bacteria and a potential target for antibiotics. The enzyme catalyses the Claisen condensation of malonyl-ACP (acyl carrier protein) with acyl-ACP via an acyl intermediate. Here, we report the crystal structure of the intermediate-mimicking *Pseudomonas aeruginosa* FabB (PaFabB) C161A variant.

Methods: His-tagged PaFabB C161A was expressed in *E.coli* Rosetta DE3 pLysS cells, cleaved by TEV protease and purified using affinity and size exclusion chromatography. Commercial screens were used to identify suitable crystallization conditions which were subsequently improved to obtain well diffracting crystals.

Results: We developed a robust and efficient system for recombinant expression of PaFabB C161A. Conditions to obtain well diffracting crystals were established. The crystal structure of PaFabB C161A was solved by molecular replacement at 1.3 Å resolution.

Conclusions: The PaFabB C161A crystal structure can be used as a template to facilitate the design of FabB inhibitors.

Keywords
crystal structure, 3-oxoacyl-[acyl-carrier-protein] synthase 1, FabB, antibiotics

This article is included in the Chemical Information Science gateway.
Introduction

New antibiotics are urgently needed to maintain the high standard of living that we have got accustomed to as the antibiotics of today are losing effectiveness faster than they are being replaced by new treatment options.\(^1\) If no action is taken, by 2050 drug-resistant infections will kill 10 million people a year worldwide, more than currently die from cancer.\(^7\) A possible source for new targets for antibiotics is the fatty acid synthesis (FAS II) pathway (Figure 1A).\(^3\) In this pathway, fatty acid synthesis is carried out by a series of monofunctional enzymes which are highly conserved among microbial pathogens. Genes coding for enzymes in the FAS II pathway have been found to be essential for \(P.\) aeruginosa in several genetic screens, including the gene for FabB (3-oxoacyl-[acyl-carrier-protein] synthase 1).\(^4\)--\(^8\)

Both, FabB and FabF (3-oxoacyl-[acyl-carrier-protein] synthase 2) catalyse the Claisen condensation of malonyl-ACP (acyl carrier protein) with acyl-ACP (Figure 1B), but differ in substrate specificity for the fatty acid chain.\(^3\) Platensimycin and platencin (Figure 1C) have been reported to be FabF and FabB inhibitors.\(^9,10\) However, it has been shown that these compounds do not bind potently to the w. t. enzyme, but only to the lauroyl-FabF intermediate (Figure 1B) and to intermediate-mimicking FabF variants in which the active site Cys has been changed to either Gln or Ala.\(^9,11\) It has been assumed that the same is the case for FabB.

To facilitate structure-based design of FAS II inhibitors, knowledge of the structures in this pathway is essential. Recently, we have reported the crystal structure of \(Pa\)FabF and the reaction intermediate-mimicking variant \(Pa\)FabF\(_{C164Q}\).\(^12\) Here, we report the crystal structure of \(Pa\)FabB C161A at 1.3 Å resolution.

Results

Protein expression and purification

The gene coding for \(P.\) aeruginosa PA14 FabB C161A was synthesised and cloned in a bacterial plasmid pET-28a (+)-TEV vector after a DNA sequence coding for a 6-His-tag followed by a TEV cleavage site. To find good expression

![Figure 1. FAS II pathway and its inhibitors. A) Schematic overview of the elongation part of the FAS II pathway. B) Condensation reaction catalysed by FabF/B. (ACP: acyl carrier protein). C) Platensimycin and platencin have been reported as dual FabF/B inhibitors.](image-url)
conditions, seven widely used *E. coli* strains were transformed with the plasmid (BL21 (DE3), BL21 (DE3) pLysS, C41 (DE3), C41 (DE3) pLysS, C43 (DE3), C43 (DE3) pLysS and Rosetta (DE3) pLysS) and screened for protein expression. The best results were obtained with Rosetta (DE3) pLysS cells (data not shown). Therefore, this cell line was used for all subsequent protein expression experiments.

His-tagged *Pa*FabB C161A was purified using affinity chromatography with a Ni column followed by size exclusion chromatography (SEC). To obtain FabB with a cleaved His-tag, the protein obtained after affinity chromatography was cleaved with TEV protease. The cleaved protein was separated from the protease and the tag by inverse affinity chromatography followed by SEC. In both cases, pure protein was obtained as judged by SDS-PAGE gel electrophoresis (Figure 2). Typical yields for His-tagged *Pa*FabB C161A were 26 mg/L and for cleaved *Pa*FabB C161A 7 mg/L.

Crystallization of *Pa*FabB C161A

Crystallization trials of His-tagged *Pa*FabB C161A and cleaved *Pa*FabB C164A were attempted using the JCSG+, PACT premier, HELIX (only His-tagged *Pa*FabB C161A) and LFS screens. No promising crystallization conditions for His-tagged *Pa*FabB C161A were found using these screens. In contrast, 11 different conditions resulted in crystals of His-tag cleaved *Pa*FabB C164A (Table 1, Figure 2). All of these conditions contained PEG 3350 between 20 and 25% and a number of conditions contained ethylene glycol. Further, the majority of the conditions contained 0.1 M Bis-Tris propane, and 0.2 M sodium iodide. Therefore, these components were kept for further optimization trials. The pH of the initial conditions varied from 5.5 to 8.5. As crystals grown in a buffer of pH 7.5 were visually judged to be more regular (e. g. the crystal shown in Figure 3B), this pH was fixed during optimization. These considerations resulted in an optimization matrix where the concentration of PEG 3350 was varied between 5 and 30% and the protein concentration between 9 and 23 mg/mL. Ethylene glycol was added to all conditions at either 10 or 20% while 0.2 M sodium iodide and
0.1 M Bis-Tris propane were fixed (Figure 4). Under 32 conditions, crystals were obtained. These were mounted and used for diffraction experiments.

Six different conditions led to well-diffracting crystals (Figure 4). For these, data sets with resolutions between 2 and 1.3 Å could be collected. For the best diffracting crystal, the crystal structure was determined using a homology model created based on *Vibrio cholerae* FabB (*Vc*FabB PDB Id 4XOX) as search model (Table 2). The crystal was in the space group C 2 2 21 and contained 2 protein molecules in the asymmetric unit.

Table 1. Conditions in which crystals of PaFabB C161A were formed. (PEG-polyethylene glycol; EG-ethylene glycol.)

<table>
<thead>
<tr>
<th>Well screen</th>
<th>Buffer</th>
<th>Salt</th>
<th>Precipitant 1</th>
<th>Precipitant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2 LFS</td>
<td>0.1 M Bis Tris Propane pH 6.5</td>
<td>0.2 M Sodium bromide</td>
<td>20 % w/v PEG 3350</td>
<td>10 % w/v EG</td>
</tr>
<tr>
<td>F3 LFS</td>
<td>0.1 M Bis Tris Propane pH 6.5</td>
<td>0.2 M Sodium iodide</td>
<td>20 % w/v PEG 3350</td>
<td>10 % w/v EG</td>
</tr>
<tr>
<td>F4 LFS</td>
<td>0.1 M Bis Tris Propane pH 6.5</td>
<td>0.2 M Potassium thiocyanate</td>
<td>20 % w/v PEG 3350</td>
<td>10 % w/v EG</td>
</tr>
<tr>
<td>G3 LFS</td>
<td>0.1 M Bis Tris Propane pH 7.5</td>
<td>0.2 M Sodium iodide</td>
<td>20 % w/v PEG 3350</td>
<td>10 % w/v EG</td>
</tr>
<tr>
<td>E3 PACT premier</td>
<td>0.2 M Sodium iodide</td>
<td>20 % w/v PEG 3350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2 PACT premier</td>
<td>0.1 M Bis-Tris propane pH 6.5</td>
<td>0.2 M Sodium bromide</td>
<td>20 % w/v PEG 3350</td>
<td></td>
</tr>
<tr>
<td>F3 PACT premier</td>
<td>0.1 M Bis-Tris propane pH 6.5</td>
<td>0.2 M Sodium iodide</td>
<td>20 % w/v PEG 3350</td>
<td></td>
</tr>
<tr>
<td>G2 PACT premier</td>
<td>0.1 M Bis-Tris propane pH 7.5</td>
<td>0.2 M Sodium bromide</td>
<td>20 % w/v PEG 3350</td>
<td></td>
</tr>
<tr>
<td>G3 PACT premier</td>
<td>0.1 M Bis-Tris propane pH 7.5</td>
<td>0.2 M Sodium iodide</td>
<td>20 % w/v PEG 3350</td>
<td></td>
</tr>
<tr>
<td>B2 JCSG+</td>
<td>0.2 M Sodium thiocyanate</td>
<td>20 % w/v PEG 3350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6 JCSG+</td>
<td>0.1 M Tris pH 8.5</td>
<td>0.2 M Magnesium chloride hexahydrate</td>
<td>20 % w/v PEG 8000</td>
<td></td>
</tr>
<tr>
<td>H10 JCSG+</td>
<td>0.1 M Bis-Tris pH 5.5</td>
<td>0.2 M Ammonium acetate</td>
<td>25 % w/v PEG 3350</td>
<td></td>
</tr>
</tbody>
</table>

0.1 M Bis-Tris propane were fixed (Figure 4). Under 32 conditions, crystals were obtained. These were mounted and used for diffraction experiments.

Six different conditions led to well-diffracting crystals (Figure 4). For these, data sets with resolutions between 2 and 1.3 Å could be collected. For the best diffracting crystal, the crystal structure was determined using a homology model created based on *Vibrio cholerae* FabB (*Vc*FabB PDB Id 4XOX) as search model (Table 2). The crystal was in the space group C 2 2 21 and contained 2 protein molecules in the asymmetric unit.

Crystal structure of PaFabB C161A

PaFabB C161A has the same overall fold as observed before for FabB and FabF from other organisms (Figure 5 and Figure 6A). The rmsd between PaFabB C161A and VcFabB (the protein with the highest sequence identity in the PDB (72%), PDB Id 4XOX) is 0.424 Å while the rmsd to the w.t. PaFabF (sequence identity 41%, PDB Id 4JPF) is 0.843 Å. The two catalytic histidines, His 296 and His 331, are highly conserved and well aligned with the catalytic histidines from both VcFabB as well as the ones from PaFabF (Figure 6B).

Due to the high concentration of ethylene glycol (20% v/v) and salt in the well and protein buffers, respectively (150 mM NaCl and 200 mM NaI), 18 ethylene glycol molecules and 11 ions (Cl⁻ and I⁻) were identified and placed in the crystal structure of PaFabB C161A during refinement (Figure 7A). Some of these molecules were found to bind in the active site of the protein (Figure 7B). The chloride ion Cl⁻ 1 binds tightly (B factor for Cl⁻ 1 is 18 Å², average B-factor for protein atoms is 16.8 Å², average ions B factors is 30.7 Å²) in the active site of chain B, in close proximity to the catalytic residues His 296 (3.3 Å) and His 331 (3.2 Å). Moreover, Cl⁻ 1 forms two additional interactions with an ethylene glycol (EDO511, average B factor 18 Å²) and a water molecule (HOH227) in the active site.
Active site and differences to PaFabF

Phe 400/391 (numbering based on PaFabF/PaFabB) was previously identified, as one of the highly conserved active site residues, to play a pivotal role in substrate specificity and ligand binding, by adopting a different conformation between

Figure 3. Selected crystals obtained from various screens. A) condition F3 from LFS, B) G3 from LFS, C) F3 from PACT premier, D) G3 from PACT premier (for composition of crystallization buffer see Table 1).

Figure 4. Plate layout for optimization of crystallization conditions. The numbers in the cells indicate the ratio between protein solution and crystallization buffer in the drops (drop 1-1:1 ratio, drop 2-1:2 ratio, drop 3-2:1 ratio). Coloured cells indicate conditions from which crystal were harvested and mounted for diffraction experiments. Green cells indicate conditions under which diffracting crystals were obtained.

Active site and differences to PaFabF

Phe 400/391 (numbering based on PaFabF/PaFabB) was previously identified, as one of the highly conserved active site residues, to play a pivotal role in substrate specificity and ligand binding, by adopting a different conformation between
Table 2. Data-collection and refinement statistics of PaFabB C161A. Values in parentheses are for the highest resolution shell.

<table>
<thead>
<tr>
<th>Data collection and processing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>C 2 2 21</td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>74.23, 102.30, 188.77</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90.00 90.00 90.00</td>
</tr>
<tr>
<td>Solvent content (%)</td>
<td>40</td>
</tr>
</tbody>
</table>

Diffraction data	
Resolution range (Å)	47.2-1.3 (1.38-1.30)
Unique reflections	339190 (54366)
Multiplicity	6.84 (6.58)
R merge (%)	5.8 (49.4)
Completeness (%)	99.6 (98.6)
I/sigI	19.11 (3.45)

Refinement	
Quaternary structure	dimer
Protein residues (in a dimer)	808
Water molecules (in a dimer)	492
Ions (in a dimer)	Iodide (11), Chloride (6)
Ligands (in a dimer)	1,2-ETHANEDIOL (18)

R.m.s.d.s	
Bonds (Å)	0.013
Angles (Å)	1.75

Ramachandran plot, residues in (%)	
Favoured regions	790 (96.02%)
Allowed regions	33 (3.98%)
Outlier regions	0 (0%)

Average B factors (Å²)	
Protein atoms	16.8
Ions, Ligands, Waters	30.7, 27.3, 30.0

| PDB code | 7PPS |

Figure 5. Cartoon representation showing the tertiary structure of PaFabB C161A. Beta sheets and alpha helices are shown in yellow and red colour respectively while loops are shown in green.
the w.t. and the intermediate state of the FabF enzyme. In w. t. PaFabF (PDB Id 4JPF, Figure 8A and B), Phe400 is in a ‘closed’ conformation (dihedral angle C-CA-CB-CG = -177.1°). When mutating the catalytic residue Cys 164 to Gln (PDB Id 7OC1 – Figure 8A and C) the enzyme has been shown to mimic the intermediate state and to trap the Phe into the ‘open’ conformation (dihedral angle C-CA-CB-CG = 168.8°). Here, the catalytic residue Cys 161 of PaFabB was mutated to Ala 161. As can be seen from the crystal structure (Figure 8A and D), Phe 391 adopts the ‘open’ conformation as expected for an intermediate-mimicking FabB variant (dihedral angle C-CA-CB-CG = 170.2°). Although, the overall sequence identity between PaFabB and PaFabF is only 41%, the conservation in the active site is much higher (Figure 9). Apart from Thr 271 in FabF that is mutated to Val 268 in FabB, all active site residues involved in hydrogen-bond interactions with platensimycin are conserved between the two enzymes (Figure 8A). That makes it highly likely that ligands binding into the active site of FabF may also bind to FabB with a similar affinity, and thus opens up the possibility for the designing of dual inhibitors for both FabF and FabB that will lead to a complete inhibition of the last step of the fatty acid elongation cycle.

Discussion

In this study, the first high-resolution crystal structure of PaFabB C161A is reported. This structure can now serve as a template for the structure-based design of FabB inhibitors. The C161A mutation of FabB in this crystal structure causes Phe 391 to be in the ‘open’ conformation (Figure 8) and allows targeting of the intermediate-acylated state of FabB; in a
The active site residues of the three different enzymes are shown as green, cyan and magenta sticks, respectively. Platensimycin binding to PaFabF C164Q (PDB Id 7OC1) is shown as yellow sticks. Side chain conformation and dihedral angle C-CA-CB-CG of Phe391/400 is shown in B) for PaFabF C) for PaFabF C164Q and D) for PaFabB C161A.

Figure 9. Sequence identity conservation between PaFabB C161A and PaFabF (PDB Id 4JPF). A) Alignment between chain A of PaFabF and PaFabB C161A is shown as cartoon style and color-coded based on the sequence identity between the two isoenzymes. B) Zoom in showing the active site and active site residues. Residue labels and numbering are based on PaFabB only.

similar manner to the natural antibiotic platensimycin. Furthermore, due to the high conservation of the overall fold and the high sequence identity in the active site between the structure reported here with PaFabF C164Q (PDB Id 7OC1), both structures can be used as a template for the design of novel dual FabF/B inhibitors.
Methods

Recombinant protein production and purification

The gene coding for *P. aeruginosa* PA14 FabB (ORF number (open reading frame): PA14_43690), with a single point mutation C161A, was synthesised and cloned in a bacterial plasmid pET-28a(+)–TEV vector using the cloning sites NdeI/ BamHI by Genscript. The plasmid had a DNA sequence coding for a 6-His-tag followed by a TEV cleavage site before PaFabB. Seven different *E. coli* strains (OverExpress C41(DE3) SOLOs and C43(DE3) SOLOs from Biosearch technologies; BL-21(DE3), BL-21(DE3) pLysS, C41(DE3) pLysS and C43(DE3) pLysS from Lucigen, and Rosetta (DE3) pLysS from Merck) were heat-shock transformed with the synthesised plasmid. Expression of PaFabB in each transformed cell line was tested as per manufacturer protocol.

E. coli Rosetta (DE3) pLysS competent cells yielded the highest protein expression, based on SDS-PAGE analysis, and were used as an expression system for large-scale protein production and purification. Transformed cells were inoculated in 50 mL of LB medium supplemented with kanamycin (30 μg/mL) and chloramphenicol (50 μg/mL) overnight at 310 K. Pre-culture stocks were prepared by mixing the overnight culture with glycerol (final concentration 40% v/v), aliquoted and kept in –80 °C until use. For large-scale expression, 0.1 mL of pre-culture stock was inoculated in 100 mL of LB medium supplemented with kanamycin (30 μg/mL) and chloramphenicol (50 μg/mL) overnight at 310 K. The entire volume was then transferred into 900 mL of LB-medium containing antibiotics and the cell growth continued until OD_{600} reached 0.7. Protein expression was then induced by adding IPTG to a final concentration of 1 mM and the expression continued for another 3-3.5 hours.

Cells were harvested by centrifugation (15 minutes, 5000 g, 277 K), resuspended in lysis buffer (20 mM Tris-HCl, 500 mM NaCl, 20 mM imidazole, 1 mM DTT, 10% glycerol (v/v), pH 7.4) with addition of one tablet of Complete EDTA-free protease inhibitor cocktail (Roche) and incubated with magnet stirring for 60 minutes at 277 K. 20 U (units) of DNase I (Sigma Aldrich) was added per cell pellet, before the mixture was sonicated on ice by an ultrasonic processor (Sonic, Vibra-Cell VC130) for a total of two minutes with 10 seconds pulses with amplitude 70. The debris and insoluble protein were pelleted by centrifugation at 15000 rpm, 277 K, for 30 minutes. The supernatant was collected and filtered with Whatman filter units 0.2 μm (GE healthcare) using a syringe. The protein was then purified using a Ni^{2+} Sepharose High Performance HiTrap HP 5 mL column (GE Healthcare) with an increasing imidazole gradient from 0 to 500 mM.

The fractions containing PaFabB C161A were pooled and TEV protease was added to remove the affinity tag. The mixture was dialyzed with buffer (25 mM Tris–HCl pH 7.5, 150 mM NaCl) overnight at 277 K and the cleaved protein was purified by passage through a Ni^{2+} HiTrap column. SEC was then performed on a HiLoad 26/600 Superdex 75 pg column (Cytiva) with equilibration buffer (20 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, pH 7.4). Purity was confirmed using a NanoDrop ND-1000 (Thermo Fisher Scientific).

Crystallization and X-ray data collection

For crystallization trials JCSG+ (MD1-37), PACT premier (MD1-29) and LFS (Ligand Friendly Screen, MD1-122) crystallization screens from Molecular Dimensions were used. His-tag cleaved PaFabB C161A (23 mg/mL) was used as the initial hit conditions (Table 2) was achieved by varying the precipitants and protein concentrations while keeping the salt and buffer concentration constant. Optimisation led to rod-shaped crystals (250 × 100 × 10 μm) in multiple drops (Figure 3).

Crystals with a final concentration of precipitant lower than 25%(w/v) were cryoprotected with a mixture consisting of the crystallization buffer and Cryomix 9 from CryoSol MD1-90 (Molecular Dimensions) (final composition of the cryomixture: 0.2 M NaI, 0.1 M Bis-Tris propane pH 7.5, 5%(w/v) PEG 3350, 10% (v/v) EG 5% (v/v), diethylene glycol, 5% (v/v) 1,2-propanediol, 5% (v/v) dimethyl sulfoxide, 5% (v/v) glycerol, 5 mM NDSB 201 (3-(1-Pyridino)-1-propanesulfonate), 5% (v/v) 1,4-dioxane) prior to flash-cooling in liquid nitrogen.

X-ray data were collected from single crystals at the DESY synchrotron (Hamburg, Germany) at the P11 high-throughput MX beamline. In each case, crystals were maintained at 100 K and the X-ray wavelength was 0.976246 Å. Data were processed with the automatic data processing pipeline of P11 beamline, using XDS.13

Structure solution and refining

The structure was solved by molecular replacement using Dimple14 from the CCP4i2 suite.15 As search model, a homology model generated from wt. VcFabB (PDB Id 4XOX) with 72% sequence identity was used. Refinement was performed using REFMAC5 while inspection of electron-density and difference density maps and model manipulation
was achieved using Coot.17 During refinement, water molecules, ions and side-chain conformers were included. The model geometry was assessed using MolProbity,18 the PDB redo server19 and the PDB validation tools. The crystallographic data and refinement statistics are listed in Table 2. The figures were generated with PyMOL v.2.4.1 (Schrödinger, LLC) and VMD v.1.9.3.20

Data availability

Protein Data Bank: The crystal structure of PaFabB C161A with the PDB Id 7PPS, https://doi.org/10.2210/pdb7PPS/pdb.

Acknowledgements

We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III and we would like to thank Johanna Hakanpää and Sofiane Saouane for assistance in using the P11 beamline. Beamtime was allocated for the proposal BAG-20190768 EC. We thank Khan Kim Dao for excellent support with protein purification and Ludvik Olai Espeland for help with preparing Figure 1.

References

Open Peer Review

Current Peer Review Status: ? ?

Version 1

Reviewer Report 06 December 2021

https://doi.org/10.5256/f1000research.77724.r101462

© 2021 Reuter K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Klaus Reuter
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany

First of all: Apart from the fact that I do not insist on CC* or CC1/2 values in Table 2, I do absolutely agree with every single concern of the 1st reviewer making it unnecessary to restate all these points.

Further (minor) issues:

- Page 3, Introduction, 1st paragraph, line 3: Replace “drug-resistant infections” with “infections caused by drug-resistant pathogens”.

- Page 3, Introduction, 2nd paragraph, line 4: Replace “w.t. enzyme” with “apo-enzyme”.

- Page 3, Figure 1 (B): In the first partial reaction of the FabF/B-catalysed reaction, the authors indicate the incoming HS-FabF/B (above the reaction arrow) but forget to indicate the leaving HS-ACP.

- Page 4, Results/Protein expression and purification, 2nd paragraph, line 2: Replace “… FabB with a cleaved His-tag …” with “… FabB lacking the His-tag …”.

- Page 4, Results/Crystallization of PaFabB C161A, 1st paragraph, line 2: Replace “cleaved FabB” with “FabB lacking the His-tag”.

- Page 5, Results/Crystal structure of PaFabB C161A, 1st paragraph, line 3: rmsd values for superimposed structures are given with three significant digits, respectively, which suggests inappropriately high accuracy. 0.424 Å should be replaced by 0.42 Å and 0.843 Å by 0.84 Å.

- Page 5, Results/Crystal structure of PaFabB C161A, 1st paragraph, line 5: Replace “… from both VcFabB as well as the ones from PaFabB …” with “… from both VcFabB and PaFabB …”.

- Page 6, Results/Active site and differences to PaFabF, 1st paragraph, line 1: The 1st sentence
of this paragraph has to be reformulated. It does not make sense in its present form.

- Page 7, Table 2: Again, several values are given with inappropriately high accuracy. Multiplicity: 6.84 (6.56) should be replaced by 6.8 (6.6); I/sig(I): 19.11 (3.45) should be replaced by 19.1 (3.5); Ramachandran plot, residues in (%): (96.02%) should be replaced by (96.0%) and (3.98%) by (4.0%).

- Page 8, Results/Active site and differences to PaFabF, 1st paragraph, line 1: Replace “w.t.” with “apo-”.

- Page 8, Results/Active site and differences to PaFabF, 1st paragraph, line 2: Replace “When mutating ...” with “Upon the mutation of ...”.

- Page 8, Results/Active site and differences to PaFabF, 1st paragraph, line 8: Replace “… is mutated to Val268 …” with “… is replaced by Val268 …” or “… corresponds to Val268 …”.

- Figure 5: It is not immediately obvious if the figure shows the homodimer or a single subunit only. This information should be given. If the complete dimer is shown (which I presume) it would make sense to present its subunits in different colours or shades of colour. The same applies to subsequent figures.

Major concern:

- The many figures showing FabB or the superpositions of different FabB/F enzymes are not very meaningful. FabB and FabF differ in substrate specificity for the fatty acid chain. The authors should definitely discuss the reasons for the respective substrate specificity by means of available structures.

- I wish the authors had explained why the C161A mutation leads to the open conformation of the active site (see reviewer 1).

In summary, the manuscript is scientifically sound and significant, although somewhat greater effort should have been put into its presentation.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes
Yadrykhins'ky et al. present an interesting story on the exploration of a new system for the development of new antibiotics. The authors make a convincing case for why fatty acid synthesis is a good target. Furthermore, the authors convey a clear technical step towards the goal by engineering a mutant variant of one enzyme in the pathway which mimics the intermediate step of the enzymatic reaction. An intermediate state that has been found to be susceptible to other inhibitors.

My objections to this paper are not on the technical and scientific soundness of the work but on its presentation.

- The introduction is short and does not clearly convey to me as a non-expert how the mutation of a Cys to Gln/Ala would make the enzyme resemble the intermediate state. I need to read all the way until Figure 9 and the Discussion to be informed about the Phe-residue that flips between open/closed conformations.

- After reading the paper, it is still not clear to me whether Gln was tried, or whether other amino acids could have had the same effect. Perhaps it is not important since Ala apparently worked.

- In the Abstract, acyl-intermediate could more clearly be written as acyl-enzyme intermediate.

- Results, Protein expression, and purification, TEV site would more precisely be termed TEV protease cleavage site.
○ Results, Crystallization (Figure 2) **C164A/C161A is mixed non-consistently.** I can only assume this is a mix-up with the group’s other work with FabF. But it is very confusing to the reader.

○ Clearly out of scope to the paper, but it would have been interesting to know if iodine-phasing was tested.

○ It is unclear how the resolution cutoff was decided. I/sig(I) is still very high at the highest resolution shell. It would also have been useful if CC* or CC1/2 was presented in Table 2.

○ The very short Discussion-segment could have been merged with the Results-section. The discussion does raise the very interesting possibility of dual-target inhibitors that would presumably be of high interest with regards to the emergence of resistance. This could have been emphasized earlier as well.

○ Methods, The sonication amplitude appears to lack a unit, presumably %. For the protein concentration determination, the extinction coefficient used should be given.

○ Reference 21 appears to be a mistake.

All in all, I did appreciate the work and look forward to the continuation of the story.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Biochemistry, structural biology, enzymology,

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com