CASE REPORT

Case Report: Elevated CPK, an indicator of idiopathic inflammatory myopathy? [version 1; referees: 2 approved]

Hina N. Khan¹, Usman Jilani², Shitij Arora¹

¹Internal Medicine, Montefiore Medical Center of the Albert Einstein College of Medicine, Bronx, USA
²New York Institute of Technology College of Osteopathic Medicine, Long Island, USA

Abstract
Polymyositis is a rare disease with incidence rates at about 1 per 100,000 people annually. In this case report we will review a case of proximal muscle weakness with an elevated creatine phosphokinase that was initially misdiagnosed twice as rhabdomyolysis. Therefore, emphasizing that idiopathic inflammatory myopathy is a potential cause of myasthenia that must be considered in the differential. The case will also describe the current treatment and treatment response in polymyositis.

Keywords
Idiopathic inflammatory myopathy, Polymyositis, Myasthenia

Corresponding author: Hina N. Khan (hkhan2@montefiore.org)
Competing interests: No competing interests were disclosed.
How to cite this article: Khan HN, Jilani U and Arora S. Case Report: Elevated CPK, an indicator of idiopathic inflammatory myopathy? [version 1; referees: 2 approved] F1000Research 2016, 5:164 (doi: 10.12688/f1000research.7681.1)
Copyright: © 2016 Khan HN et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Grant information: The author(s) declared that no grants were involved in supporting this work.
Introduction
When a clinician is confronted with a case of muscle weakness in the setting of a severely elevated creatine phosphokinase by probability alone, the most likely culprit is rhabdomyolysis. Incidence rates of rhabdomyolysis are about four to five-fold that of polymyositis. This is reflected in the abundance of medical literature citing cases of rhabdomyolysis. This case report highlights a patient who presented with symptoms of an elevated creatine kinase and myasthenia, but was eventually diagnosed with an idiopathic inflammatory myopathy. Idiopathic inflammatory myopathies have only rarely been described in patients as the etiology of these diseases is poorly understood. Mechanisms of action including cellular-mediated cytotoxic mechanisms in polymyositis, to a complement-mediated vasculopathy of the small vessels in muscle tissues in dermatomyositis, to a primarily macrophage driven degeneration in immune-mediated necrotizing myopathy have all been ascribed as the pathophysiology behind idiopathic inflammatory myopathies. Currently, there is an understanding that both genetic and environmental factors play a role in unmasking an inflammatory myopathy. Our case reviews why the presence of proximal muscle weakness, an elevated creatinine phosphokinase, and systemic clues should raise the clinician’s suspicion for these poorly understood idiopathic inflammatory myopathies.

Case
A 64-year-old man presented with two weeks of progressive proximal muscle weakness causing him difficulty ambulating, combing his hair, and raising himself from a seated position. He also reported dysphagia to solids over the past week. The patient was recently hospitalized twice for difficulty ambulating. Past medical history was significant for poorly controlled diabetes mellitus. On exam, vitals were within normal limits. Cardiovascular exam revealed regular rate and rhythm with no extra heart sounds and lung exam revealed clear lungs on auscultation. On neurologic exam, patient was awake, alert, and oriented. Cranial nerves II through XII were grossly intact. There was proximal muscle weakness to 4/5 bilaterally in the shoulders and hips, but preserved strength distally. Sensation to light touch remained intact. Hemoglobin was 10.5 g/dL, with a normal MCV, WBC were 3.8 K/ul., and platelets were 246 K/ul. Basic metabolic panel revealed a sodium of 141 mEq/L, a potassium of 4.8 mEq/L, and a creatine of 0.90 mg/dl. Transaminites including AST and ALT were 65 and 36 U/L, respectively. CPK was 2705 U/L, ESR and CRP were within normal limits and RF, anti-Ro/La, anti-Jo1, anti-RNP, anti-centromere, anti-Scl-70, and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections. An and anti-dsDNA were all negative. An MRI of the right arm revealed myositis with no discrete collections.

Discussion
Myasthenia, or simply muscle weakness, is a common admitting diagnosis in the inpatient setting with a broad differential. However, when considering a case of myasthenia with an elevated CPK the differential diagnosis for myasthenia is narrowed to rhabdomyolysis or a myopathy. While acute exertional rhabdomyolysis can be diagnosed by history, the syndrome of idiopathic inflammatory myopathies must be differentiated from myopathies caused by infections, toxins, paraneoplastic syndrome, and endocrinopathies. Idiopathic inflammatory myopathy encompasses systemic rheumatic diseases including polymyositis and dermatomyositis. Our patient met three out of the four criteria for polymyositis per the American College of Rheumatology including symmetric proximal muscle weakness, elevation of skeletal muscle enzymes, and an abnormal EMG showing polyphasic, short, small motor unit potentials, fibrillation potentials, positive sharp waves, and repetitive high-frequency discharges, suggesting a probable diagnosis of polymyositis. The final criteria needed for definitive diagnosis is an abnormal muscle biopsy with histopathologic findings of degeneration, regeneration, necrosis, and interstitial mononuclear infiltrates, in this case, muscle biopsy was presumed not representative as his anterior right deltoid had been sampled as opposed to the posterior or lateral deltoid which is typically higher yield. However, several epidemiologic features make this a particularly difficult diagnosis in this patient. Foremost, polymyositis is a rare disease with incidence rates occurring in about 1 per 100,000 people annually. Additionally, polymyositis is seen twice as commonly in women than in men. Furthermore, although polymyositis can occur at any age, it typically peaks in the 30–50 year age range, and our patient had a later age of onset. This case also highlights the low sensitivity of serologic tests including anti-Jo-1, anti-Scl-70, and anti-RNP which are prevalent in 21%, 6%, and 5% of patients with polymyositis, respectively.

However, when considering a case of myasthenia with an elevated CPK, some key features can be used to differentiate polymyositis from other diagnoses. These include chronicity of symptoms, presentation of symmetric proximal muscle weakness, and presence of bulbar features, which can be seen in polymyositis, dermatomyositis, or inclusion body disease. Other systemic signs including rash seen in dermatomyositis, or Raynaud Phenomenon seen in scleroderma or CREST can also aid in correctly arriving at a diagnosis. Steroids remain the cornerstone of treatment in polymyositis, respectively.
glucocorticoid receptor polymorphisms as possible explanations. In conclusion, polymyositis is a rare disease with several epidemiologic features and serologic markers which are neither sensitive nor specific, but key history and physical exam findings can help arrive at a diagnosis of polymyositis when confronted with a case of myasthenia and an elevated CPK, and thus aid in promptly initiating appropriate therapy.

Consent
Written informed consent for publication of their clinical details was obtained from the patient.

Author contributions
SA conceived the case report. HK prepared the first draft of the case report. All authors were involved in the revision of the drafts and have agreed to the final content.

Competing interests
No competing interests were disclosed.

Grant information
The author(s) declared that no grants were involved in supporting this work.

References
Open Peer Review

Xenofon Baraliakos
Department of Rheumatology, Ruhr University Bochum, Herne, Germany

This is an interesting case of a differential diagnosis for inflammatory myopathy. I only have minor suggestions or open questions.

- Was ESR only tested once? What about previous examinations which might have shown increased values? In daily practice we ask for such results when we see these patients (e.g. from previous GP consultations) and it would be interesting to see if the patient never has had increased inflammatory markers, which would be a bit unusual.

- Should there be an MR image of the pathologic finding, it would be nice to add it to this report, if the space allows.

- Did you ever consider doing a second biopsy for the case that the right area has been missed? If not, it would be worth it to add a sentence in the Discussion about the role of repeated biopsies in such cases.

- The patient had reported to have poorly controlled diabetes mellitus. What happened to that condition after 1 month of high-doses of cortisone and how did you deal with it? Again, 1-2 sentences in the Discussion would be informative in order to think of how to solve this comorbidity.

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Martin Aringer
Department of Medicine III, University Medical Center Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany

This is an educational case of a 64 year old male who presented with a fairly typical picture of a few weeks of proximal muscle weakness, difficulties swallowing, increased AST and very high CPK levels, but
was initially misdiagnosed as having rhabdomyolysis. The absence of a usual trigger of rhabdomyolysis, the lack of rapid improvement and the pharyngeal involvement were early clues that the latter differential diagnosis was not correct. A muscle biopsy was unfortunately negative, and the authors found no specific autoantibodies, so that the diagnosis is not certain. The clinical picture, the MRI findings, and the improvement under glucocorticoids, which usually takes at least two weeks, nevertheless support that this patient has polymyositis. The only unusual finding is the normal ESR. In addition, the authors should have tested for antinuclear antibodies (ANA) by indirect immunofluorescence on HEP2 cells, where both ANA and cytoplasmic fluorescence would have given further clues. Many of the patients with anti-synthetase antibodies do have additional symptoms, ranging from mild Raynaud’s and mild arthritis to mechanics’ hand and early signs of interstitial lung disease. In addition to anti-Jo-1 antibodies, several other anti-synthetase antibodies can be tested for today. Some patients will have malignancies underlying new onset polymyositis or, more often dermatomyositis.

Recommendations for (small) changes:
1. understood (instead of understand) in the last sentence of the Introduction.
2. in the setting of very high CPK values… (instead of elevated CPK values) second sentence of the Discussion.
3. The final criterion (instead of criteria) in the middle of the first paragraph of the Discussion; a reference should also be added there.
4. Raynaud’s (instead of Raynaud) and systemic sclerosis (instead of scleroderma or CREST) in the second paragraph of the Discussion

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.