COMMENTARY

Software Carpentry: lessons learned [version 2; referees: 3 approved]

Greg Wilson
Software Carpentry Foundation, Austin, TX, USA

Abstract
Since its start in 1998, Software Carpentry has evolved from a week-long training course at the US national laboratories into a worldwide volunteer effort to improve researchers' computing skills. This paper explains what we have learned along the way, the challenges we now face, and our plans for the future.

This article is included in the Bioinformatics Education and Training Collection collection.

Corresponding author: Greg Wilson (gwwilson@software-carpentry.org)
Competing interests: The author is an employee of the Software Carpentry Foundation. Over the years, Software Carpentry has received support from the organizations listed in Section 2.3 and Table 1, and from The Mathworks, Enthought Inc., Continuum Analytics, the Sloan Foundation, and the Mozilla Foundation.

Copyright: © 2016 Wilson G. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: Software Carpentry is not currently supported by grants.
1 Introduction
In January 2012, John Cook posted this to his widely-read blog:\footnote{www.johndcook.com/blog/}

In a review of linear programming solvers from 1987 to 2002, Bob Bixby says that solvers benefited as much from algorithm improvements as from Moore’s law: “Three orders of magnitude in machine speed and three orders of magnitude in algorithmic speed add up to six orders of magnitude in solving power. A model that might have taken a year to solve 10 years ago can now solve in less than 30 seconds.”

A million-fold speed-up is impressive, but hardware and algorithms are only two sides of the iron triangle of programming. The third is programming itself, and while improvements to languages, tools, and practices have undoubtedly made software developers more productive since 1987, the speed-up is percentages rather than orders of magnitude. Setting aside the minority who do high-performance computing (HPC), the time it takes to write, test, debug, install, and maintain software.

The problem is that most scientists are never taught how to do this. Their undergraduate programs may include a generic introduction to programming or a statistics or numerical methods course (in which they are often expected to pick up programming on their own), but they are almost never told that version control exists, and rarely if ever that version control is a valuable skill. They are often expected to parallelize complex programs that were not broken down into self-contained functions, that did not have any automated tests, and that were not under version control\footnote{http://www.mathworks.com/products/matlab/email/learn.html}.

The problem is that most scientists are never taught how to do this. Their undergraduate programs may include a generic introduction to programming or a statistics or numerical methods course (in which they are often expected to pick up programming on their own), but they are almost never told that version control exists, and rarely if ever that version control is a valuable skill. They are often expected to parallelize complex programs that were not broken down into self-contained functions, that did not have any automated tests, and that were not under version control\footnote{http://www.mathworks.com/products/matlab/email/learn.html}.

In response, John Reynders (then director of the Advanced Computing Laboratory at Los Alamos National Laboratory) invited the author and Brent Gorda (now at Intel) to teach a week-long course to LANL staff. This course ran for the first time in July 1998, and was repeated nine times over the next four years. It eventually wound down as Gorda and the author moved on to other projects, but two valuable lessons were learned:

1. Intensive week-long courses are easy to schedule (particularly if instructors have to travel) but by the last two days, attendees’ brains are full and learning drops off significantly.
2. Textbook software engineering is not useful to most scientists. In particular, careful documentation of requirements and lots of up-front design are not appropriate for people who (almost by definition) do not know what the right answer is yet. Agile development methods (which rose to prominence during this period) are a less bad fit to researchers’ needs, but even they are not well suited to the common “solo grad student” model of working.

2.2 Versions 2 and 3: Another red light
The Software Carpentry course materials were updated and released in 2004–05 under a Creative Commons license with support from the Python Software Foundation\footnote{http://www.python.org}. They were used twice in a conventional term-long graduate course at the University of Toronto aimed at a mix of students from Computer Science and the physical and life sciences.
The materials attracted 1000–2000 unique visitors a month. But while graduate students (and the occasional faculty member) found the course at Toronto useful, it never found an institutional home. Most Computer Science faculty believe that this basic material is too easy to deserve a graduate credit (even though a significant minority of their students, particularly those coming from non-CS backgrounds, have no better software development skills than the average physicist). Meanwhile, other departments believe that courses like this ought to be offered by Computer Science, in the same way that Mathematics and Statistics departments routinely offer service courses. In the absence of an institutional mechanism to offer credit courses at some inter-departmental level, this course, like many other interdisciplinary initiatives, was left without a home.

It works too well to be worth teaching

Most computer scientists want to do research to advance our understanding of the science of computing; things like command-line history, tab completion, and “select * from table” have been around too long, and work too well, to be interesting. As long as universities reward research first, and teaching last, it is simply not in most computer scientists’ interests to offer courses like this.

Secondly, despite repeated invitations, other people did not contribute new material beyond an occasional bug report (a point which we will return to in Section 6).

The most important lesson, though, was that while many faculty in science, engineering, and medicine agree that their students should learn more about computing, they won’t agree on what to take out of the current curriculum to make room for it. A typical undergraduate science degree in the US or Canada comprises roughly 1800 hours of class and laboratory time. Anyone who wants to add more programming, statistics, writing, or anything else must either lengthen the program (which is financially and institutionally infeasible) or take something out. However, everything in the program is there because it has a passionate defender who thinks it’s vitally important, and who is likely senior to those faculty advocating the change.

It adds up

Saying, “We’ll just add a little computing to every other course,” is a cheat: five minutes per hour equals four entire courses in a four-year program, which is unlikely to ever be implemented. Pushing computing down to the high school level is also a non-starter, since that curriculum is also full.

The sweet spot for this kind of training is therefore the first years of graduate school. At that point, students have time to learn (at least, more time than they’ll have once they’re faculty) and real problems of their own that they want to solve.

2.3 Version 4: orange light

The author rebooted Software Carpentry in May 2010 with support from Indiana University, Michigan State University, Microsoft, MITACS, Queen Mary University of London, Scimatic, SciNet, SHARCNet, and the UK Met Office. More than 120 short video lessons were recorded during the subsequent 12 months, and six week-long classes were run for the backers. We also offered an online class three times (a MOOC avant la lettre).

This was our most successful version to date, in part because the scientific landscape itself had changed. Open access publishing, crowd sourcing, the data deluge in the life sciences, and growing concern about reproducible research had convinced a growing number of scientists that knowing how to program was now as important as knowing how to do statistics. Even most of them, though, still (rightly) regarded it as a tax they had to pay in order to get their science done.

Despite this round’s overall success, there were several disappointments:

1. Once again, we discovered that five eight-hour days are more wearying than enlightening.

2. And once again, only a handful of other people contributed material (see Section 6).

3. Creating videos is significantly more work than creating slides. Editing or modifying them is harder still: while a typo in a slide can be fixed by opening PowerPoint, making the change, saving, and re-exporting the PDF, inserting new slides into a video and updating the soundtrack seems to take at least half an hour regardless of how small the change is. This makes maintaining a video-based course prohibitively expensive.

4. Most importantly, the MOOC format didn’t work: only 5–10% of those who started with us completed the course, and the majority were people who already knew most of the material. Both figures are in line with completion rates and learner demographics for other MOOCs\(^2\), but that does not make them less disappointing.

The biggest take-away from this round was the need to come up with a scalable, sustainable model for delivering training. One instructor simply can’t reach enough people, and cobbling together funding from half a dozen different sources every twelve to eighteen months is risky as well as wearying.

2.4 Version 5: green light

Software Carpentry rebooted again in January 2012 with a grant from the Sloan Foundation to the Mozilla Foundation. This time, the model was two-day intensive workshops like those pioneered by The Hacker Within, a grassroots group of grad students helping grad students at the University of Wisconsin - Madison.

Shortening the workshops made it possible for more people to attend, and increased the proportion of the material they could absorb. It also forced us to think much harder about what skills scientists really needed. Out went object-oriented programming, XML, Make, and other topics. Instead, we focused on a small set of tools that let us introduce higher-level concepts without learners really noticing (Section 3).
Reaching more people allowed us to recruit new instructors from workshop participants, which in turn allowed us to scale. Switching to a “host site covers costs” model was equally important: funding was still needed for 1.5 core staff to lead the project and match instructors to workshops, but everything else funded itself.

Learning to teach

One of our most important discoveries during this period was that many people are as interested in learning about better teaching practices as they are in learning about computing. We discuss this in detail in Section 5.

2.5 Version 6: A true community project

In July 2014, the author left Mozilla and set up the Software Carpentry Foundation, an independent non-profit foundation under the auspices of NumFOCUS. The SCF held its first elections in January 2015, in which instructors who had taught over the past two years selected seven of their own number as a Steering Committee to oversee the project’s operations. Since then, the SCF has formed partnerships with a growing number of institutions (see Table 1), run an ever-increasing number of workshops, and much more.

Table 1. Current Partners (November 2015).

<table>
<thead>
<tr>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley Institute for Data Science</td>
</tr>
<tr>
<td>Compute Canada</td>
</tr>
<tr>
<td>GitHub</td>
</tr>
<tr>
<td>Insight Data Science</td>
</tr>
<tr>
<td>iPlant</td>
</tr>
<tr>
<td>Lawrence Berkeley National Laboratory</td>
</tr>
<tr>
<td>Michigan State University</td>
</tr>
<tr>
<td>Netherlands eScience Center</td>
</tr>
<tr>
<td>New Zealand eScience Infrastructure</td>
</tr>
<tr>
<td>Oklahoma State University</td>
</tr>
<tr>
<td>RStudio</td>
</tr>
<tr>
<td>Software Sustainability Institute</td>
</tr>
<tr>
<td>University College London</td>
</tr>
<tr>
<td>UCAR</td>
</tr>
<tr>
<td>University of California Davis</td>
</tr>
<tr>
<td>University of Colorado</td>
</tr>
<tr>
<td>University of Florida</td>
</tr>
<tr>
<td>University of Leeds</td>
</tr>
<tr>
<td>University of Melbourne</td>
</tr>
<tr>
<td>University of Michigan</td>
</tr>
<tr>
<td>University of Oklahoma</td>
</tr>
<tr>
<td>University of Washington</td>
</tr>
</tbody>
</table>

While the SCF is only nine months old, we have already learned many things. The most important are:

1. The first few people to join a volunteer organization are usually keener than those who join later. As numbers grow, therefore, the time contributed per person will decrease, and structures must be designed with this in mind. In particular, by the time 400 people are involved, most will be dipping in and out of conversations rather than taking part on a daily or weekly basis, so frameworks and procedures must become simple and stable.

2. Every partner organization has different needs and constraints (We have learned much more than we ever wanted to about accounting rules at various universities...). “Standard” partnership agreements therefore have to be treated as starting points for negotiation, rather than as “take it or leave it” propositions.

3. “Bikeshedding” is the practice of arguing over minor, marginal issues while more serious ones are overlooked. It is a constant danger in an organization whose more vocal members actually enjoy programming. Squelching such technical discussions has a chilling effect on conversation overall, but letting them go unchecked alienates people who would rather talk about teaching, or simply don’t have enough time to go down technical rabbit holes. We discuss an example in Section 7 and Section 8.4.

2.6 Data Carpentry

The biggest recent development, though, has been the foundation of a sibling organization called Data Carpentry in April 2014. Where Software Carpentry’s mission is to help scientists who are programming badly to program better, Data Carpentry’s focus is, as its name implies, to help them manage and analyze their data. Led by Dr. Tracy Teal, Data Carpentry was recently awarded $700,000 by the Moore Foundation, and is expected to grow rapidly over the coming two years.

2.7 Results

Dataset 1. Cumulative Number of Workshops over Time

http://dx.doi.org/10.5256/f1000research.3536.d111654

The cumulative number of Software Carpentry workshops between November 2011 – October 2015, and the dates they were held.

Dataset 2. Cumulative Number of Workshop Attendees over Time

http://dx.doi.org/10.5256/f1000research.3536.d111655

The cumulative number of people attending Software Carpentry workshops between November 2011 – October 2015.

Dataset 3. Cumulative Number of Qualified Instructors over Time

http://dx.doi.org/10.5256/f1000research.3536.d111656

The cumulative number of qualified instructors trained between May 2012 – October 2015.
As we discuss in Section 8.1, we do not know how to measure the impact of our workshops. However, both the number (Figure 1) and the number of people attending (Figure 2), have grown steadily, as has the number of instructors (Figure 3).

We are now a truly global organization (Table 3). And most importantly, feedback from participants is strongly positive. While there are always problems with software set-up and the speed of instruction (Section 8.2), 80–90% of attendees typically report that they were glad they attended and would recommend the workshops to colleagues.

Table 2. Authors per Lesson (October 2015).

<table>
<thead>
<tr>
<th>Topic</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Git</td>
<td>55</td>
</tr>
<tr>
<td>Mercurial</td>
<td>25</td>
</tr>
<tr>
<td>MATLAB</td>
<td>28</td>
</tr>
<tr>
<td>Python</td>
<td>52</td>
</tr>
<tr>
<td>R</td>
<td>49</td>
</tr>
<tr>
<td>Unix Shell</td>
<td>64</td>
</tr>
<tr>
<td>SQL</td>
<td>41</td>
</tr>
</tbody>
</table>

Figure 1. Cumulative number of workshops.

Figure 2. Cumulative number of learners.
Table 3. Workshops and Instructors by Country (October 2015).

<table>
<thead>
<tr>
<th>Country</th>
<th>Workshops</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>216</td>
<td>232</td>
</tr>
<tr>
<td>Canada</td>
<td>59</td>
<td>52</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>Australia</td>
<td>33</td>
<td>41</td>
</tr>
<tr>
<td>Brazil</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>South Africa</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>New Zealand</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Norway</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Germany</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>South Korea</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>France</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Poland</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Switzerland</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Italy</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Spain</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>China</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cyprus</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Denmark</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Finland</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ghana</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Jordan</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lebanon</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sweden</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Thailand</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>India</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

3 What we do

So what does a typical workshop look like?

- **Day 1 a.m.**: The Unix shell. We only show participants a dozen basic commands; the real aim is to introduce them to the idea of combining single purpose tools (via pipes and filters) to achieve desired effects, and to getting the computer to repeat things (via command completion, history, and loops) so that people don’t have to.

- **Day 1 p.m.** Programming in Python, R, or MATLAB. (Only one language is taught in any given workshop.) The real goal is to show them when, why, and how to grow programs step-by-step as a set of comprehensible, reusable, and testable functions.

- **Day 2 a.m.** Version control. We begin by emphasizing how this is a better way to back up files than creating directories with names like “final”, “really_final”, “really_final_revised”, and so on, then show them that it’s also a better way to collaborate than FTP or Dropbox.

- **Day 2 p.m.** Either more about programming in the workshop’s chosen language, or an introduction to databases and SQL. If the latter is chosen, the real goal is to show them what structured data actually is (in particular, why atomic values and keys are important) so that they will understand why it’s important to store information this way.

As the descriptions above suggest, our real aim isn’t to teach any specific tool: it’s to teach computational competence. We can’t do this in the abstract: people won’t show up for a hand-waving talk about general principles because they won’t believe those principles will help them meet next Thursday’s deadline. Even if they do, they won’t understand, because big ideas need to be grounded in specific examples to be comprehensible. If we show them how to solve a specific problem with a specific tool, we can then lead
into a larger discussion of how scientists ought to develop, use, and curate software.

There are a lot of local variations around the curriculum shown above. For example, some instructors use the command-line Python interpreter, while others prefer the Jupyter Notebook. Still others teach R or MATLAB instead, while a handful of workshops also cover tools such as LaTeX, or domain-specific topics such as audio file processing, depending on the needs of the audience and the expertise of the instructor.

We aim for no more than 40 people per room at a workshop, so that every learner can receive personal attention when needed. Where possible, we run two or more rooms side by side, and use a pre-assessment questionnaire to stream learners by prior experience, which simplifies teaching and improves their experience. We do not shuffle people from one room to another between the first and second day: with the best inter-instructor coordination in the world, doing so would result in lost context.

Our workshops are sometimes free, but most now charge a small registration fee (typically $20–40), primarily because it reduces the no-show rate from a third to roughly 5%. When this is done, we must be careful not to trip over institutional rules about commercial use of their space: some universities will charge hundreds or thousands of dollars per day for use of their classrooms if any money changes hands. As this is usually several times more than a small registration fee would bring in, we usually choose the higher no-show rate as the lesser evil (We have also experimented with refundable deposits, but the administrative overheads were unsustainable. It also does not help get around the rules mentioned in the previous paragraph, since money still appears to be changing hands in the university’s eyes.).

Commercial offerings

Our material is all covered by the Creative Commons Attribution license, so anyone who wants to use it for commercial training can do so without explicit permission from us. We encourage this: if graduate students can help pay their bills by sharing what they know, in the way that many programmers earn their living by working on open source software, our community will only be stronger.

What requires permission is use of our name and logo, both of which are trademarked. Such permission is granted automatically if at least one instructor is certified, the workshop covers three core topics (the shell, version control, and a programming language), and the organizers send us summary information (the dates, the location, and the number of attendees). We put these rules in place because of people calling something “Software Carpentry” when they had nothing to do with what we usually teach. We have worked hard to create material that actually helps scientists, and to build some name recognition around it, and we would like to make sure our name continues to mean something.

Administration fees

If the Software Carpentry Foundation helps to organize a workshop (e.g., finds instructors and handles registration) then we charge the host site a $2500 administration fee. This fee, which currently provides about a quarter of our revenue, is routinely waived for workshops in under-served areas and developing countries. If host sites organize the workshop themselves, we will still set up registration and send out pre- and post-workshop questionnaires. There is no fee in this case, but we do ask for a donation (we suggest $500).

As well as instructors, we rely on local helpers to wander the room and answer questions during practical sessions. These helpers may be alumni of previous workshops who are interested in becoming instructors, grad students who have picked up some or all of our core skills on their own, or members of the local open source community; where possible, we aim to have at least one helper for every eight learners.

We find workshops go a lot better if people come in groups (e.g., 4–5 people from one lab) or have other pre-existing ties (e.g., are working in the same field). They are less inhibited about asking questions, and can support each other (morally and technically) when the time comes to put what they’ve learned into practice after the workshop is over. Group sign-ups also yield much higher turnout from groups that are otherwise often under-represented, such as women and minority students, since they know in advance that they will be in a supportive environment.

4 Small things add up

As in chess, success in teaching often comes from the accumulation of seemingly small advantages. Here are a few of the things we do that we believe have contributed to our success.

4.1 Feedback loops

Giving each learner two sticky notes of different colors allows instructors to do quick true/false questions as they’re teaching. It also allows real-time feedback during hands-on work: learners can put a green sticky note on their laptop when they have something completed, or a red one when they need help.

We also use them as minute cards: before each break, learners take a minute to write one thing they’ve learned on the green sticky note, and one thing they found confusing (or too fast or too slow) on the red. It only takes a couple of minutes to collate these, and allows the instructors to adjust to learners’ interests and speed.

We frequently also ask for summary feedback at the end of each day. The instructors ask the learners to alternately give one positive and one negative point about the day, without repeating anything that has already been said. This requirement forces people to say things they otherwise might not: once all the “safe” feedback has been given, participants will start saying what they really think.

Different channels, different messages

Minute cards are anonymous; the alternating up-and-down feedback is not. Each mode has its strengths and weaknesses, and by providing both, we hope to get the best of both worlds.

On a longer timescale, we send a post-workshop assessment questionnaire to attendees shortly after the workshop ends.
rates vary, but are usually low, and the opt-in nature of the survey undoubtedly biases the data (Section 8.1). Feedback from instructors has proven more insightful. In August 2015, for example, Azalee Bostroem surveyed our instructors to find out what they were actually teaching about Python (http://software-carpentry.org/blog/2015/09/thinking-about-teaching.html). From this, we learned that 60% of our learners are novices with little or no prior programming experience, and that only a third of workshops get through the entire Python lesson.

Finally, starting in January 2015 we began running biweekly debriefing sessions for instructors who have recently taught workshops, in which they can discuss what they actually did, how it worked, how the lessons they actually delivered differed from our templates, what problems arose, and so on. Summaries are posted shortly after each meeting, and Alistair Walsh recently collected and posted information about the same Python lesson discussed above (http://software-carpentry.org/blog/2015/10/python-debriefing-summary.html). We are now (October 2015) beginning a redesign of the lesson to take all this information into account.

4.2 Live coding
We teach via live coding rather than using slides because:

• Watching code emerge on the screen is much more convincing than looking at pre-made slides.

• It enables instructors to be more responsive to “what if?” questions.

• It facilitates lateral knowledge transfer (e.g., people learn about keyboard shortcuts and efficient search/replace strategies in the editor as well as Python).

• It slows instructors down: if they have to type in code as they go along, they can only go twice as fast as their learners instead of ten times as fast. (And once instructors get in the habit of saying everything twice—once as they’re typing, and a second time to recapitulate, pointing at the screen—most learners are able to keep up.)

• Learners get to see instructor’s mistakes and how they diagnose and fix them. Learners frequently report that this is the most valuable part of the workshop: as novices, they’re going to spend most of their time trying to figure out what’s gone wrong and how to fix it, so it’s very valuable to see which parts of error messages instructors pay attention to, and what steps they take to correct mistakes.

It takes a bit of practice for instructors to get used to thinking aloud while coding in front of an audience, but most report that it is then no more difficult to do than talking off a deck of slides.

One device good, two devices better
Many instructors now use two devices when teaching: a laptop plugged into the projector for learners to see, and a tablet beside it on which they can view their notes and the Etherpad session (Section 4.7). This seems to be more reliable than displaying one virtual desktop while flipping back and forth to another.

4.3 Open everything
Our grant proposals, mailing lists, and everything else that isn’t personally sensitive are out in the open (see 13 for links). We believe that letting people see us succeed, fail, and learn encourages them to be more involved in our community, and inspires them to be open as well.

4.4 Open lessons
This is an important special case of the previous point. Anyone who wants to use our lessons can take what we have, make changes, and offer those back by sending us a pull request on GitHub. As discussed in Section 6, this workflow is foreign to most educators, but allows us to scale and adapt more quickly and more cheaply than the centralized approaches being taken by many high-profile online education ventures.

For example, we recently “published” our core lessons through Zenodo. The number of contributors per lesson is shown in Table 2. The distribution of contributions has the usual long-tail distribution, but the fact remains that our lessons have had more contributors than many “massive” and “open” online courses.

4.5 Use what we teach
We also make a point of eating our own cooking, e.g., we use GitHub for our web site and to plan workshops. Again, this makes us more credible, and gives instructors hands-on practice with the things they’re going to teach. Up until a year ago, the (considerable) downside to this was that it could be difficult for newcomers to contribute material. We have simplified our templates and build procedures considerably to fix this, and will be making more changes early in 2016 to incorporate further insights.

One problem we haven’t solved is the bikeshedding mentioned earlier. Many contributors would rather spend days tweaking the build process for lessons rather than an hour coming up with some new self-test exercises for those same lessons, both because they are on more familiar ground when debating programming issues, and because the feedback loop is much tighter. One of our goals for the coming year is to push the bulk of discussion toward teaching practices and lesson content.

4.6 Meet the learners on their own ground
Learners tell us that it is important to them to leave the workshop with their own machine set up to do real work. We therefore continue to teach on all three major platforms (Linux, Mac OS X, and Windows), even though it would be simpler to require learners to use just one (Section 8.3).

We have experimented with virtual machines (VMs) on learners’ computers to reduce installation problems, but those introduce problems of their own: older or smaller machines simply aren’t fast enough, and learners often struggle to switch back and forth between two different sets of keyboard shortcuts for things like copying and pasting.

Some instructors use VPS over SSH or web browser pages instead. This solve the installation issues, but makes us dependent on host institutions’ WiFi (which can be of highly variable quality), and has the issues mentioned above with things like keyboard shortcuts.
4.7 Collaborative note-taking
We often use Etherpad for collaborative note-taking and to share snippets of code and small data files with learners. (If nothing else, it saves us from having to ask students to copy long URLs from the presenter’s screen to their computers.) It is almost always mentioned positively in post-workshop feedback, and several workshop participants have started using it in their own teaching.

4.8 Pair programming
Pairing is a good practice in real life, and an even better way to teach: partners can not only help each other out during the practical, but can also clarify each other’s misconceptions when the solution is presented, and discuss common research interests during breaks. To facilitate this, we strongly prefer flat (dinner-style) seating to banked (theater-style) seating; this also makes it easier for helpers to reach learners who need assistance.

4.9 Diversity
On June 24–25, 2013, we ran our first workshop for women in science, engineering, and medicine. This event attracted 120 learners, 9 instructors, a dozen helpers, and direct sponsorship from several companies, universities, and non-profit organizations. Our second such workshop ran in March 2014, and we have done half a dozen of varying sizes since. While we do occasionally get complaints (mostly from outsiders) about such events being discriminatory, they are overwhelmed by the uniformly positive response from participants, many of whom say that they would probably not have attended a mixed-gender event because of previous bad experiences with tech meetups.

5 Instructor training
The instructor training program that we started in August 2012 has attracted hundreds of participants, and at the time of writing there are over 400 more on the waiting list. This introduction to modern research in education and evidence-based teaching practices doesn’t just improve our teaching: it also helps give the instructors a sense of community and purpose.

In its original form, training took 2–4 hours/week of participants’ time for 12–14 weeks (depending on scheduling interruptions); more recently, we have run it both as a live two-day event, and as a two-day online event, in which participants are together in groups of half a dozen or more at one, two, or three sites, while the instructor takes part over the web.

This training course introduces participants to the basics of educational psychology, instructional design, and how these things apply to teaching programming. It is necessarily very shallow, but most participants find the material interesting as well as useful. Introducing grad students and faculty to evidence-based teaching practices may turn out to be Software Carpentry’s greatest contribution.

5.1 Why teach?
But why do people volunteer as instructors?

• To make the world a better place. The two things we need to get through the next hundred years are more science and more courage; by helping scientists do more in less time, we are helping with the former.

• To make their own lives better. Our instructors are often asked by their colleagues to help with computing problems. The more those colleagues know, the more interesting those requests are.

• To network. Showing up to run a workshop is a great way for people to introduce themselves to colleagues and make contact with potential collaborators. This is probably the most important reason from Software Carpentry’s point of view, since it’s what makes our model sustainable.

• To practice teaching. This is also important to people contemplating academic careers.

• To help diversify the pipeline. Computing is 12–15% female, and that figure has been dropping since its high point in the 1980s. Some of our instructors are involved in part because they want to help break that cycle by participating in activities like our workshops for women in science and engineering.

• To learn new things, or learn old things in more detail. Working alongside an instructor with more experience is a great way to learn more about the tools, as well as about teaching.

• It’s fun. Our instructors get to work with smart people who actually want to be in the room, and don’t have to mark anything afterwards. It’s a refreshing change from teaching undergraduate calculus. . .

6 Collaborative lesson development
Large-scale ad hoc collaboration is the norm in open source software development and the creation of encyclopedia articles, but is still rare in other fields. In particular, teachers often use one another’s slide decks as starting points for their own courses, but rarely offer their changes back to the original author in order to improve them. This is only partly because educators’ preferred file formats (Word, PowerPoint, and PDF) aren’t handled gracefully by existing version control systems. A deeper cause is that there isn’t a culture of contribution, particularly in higher education.

The question is, why not? Reasons advanced include:

• Lack of technical skill. But (a) many teachers edit Wikipedia, and (b) a large number of those who teach programming certainly do have the technical skills.

• Lack of institutional rewards. But if this was a real barrier, open source software and Wikipedia wouldn’t exist.

• Episodic interaction. If someone is teaching a full or half-year course, they may only revisit the material every six months to a year, and the context in which it’s taught may well be different.

• It just hasn’t happened yet. This argument might have been tenable a decade ago, but is less credible with every passing year.

Our current hypothesis is that teaching is enacted knowledge. To make a musical analogy, the lesson plan, slides, and assignments
are only the score; what matters most is how it’s performed. If this is correct, then collaborative lesson development will only succeed if it is done as part of what the Japanese call jukyokenkyu (lesson study): the systematic observation and discussion of lessons by fellow teachers.

In aid of this, in January 2015 we began running biweekly debriefing sessions for instructors who have recently taught workshops (see Section 4.1). We are also planning to revise instructor training to require trainees to watch and reflect on videos of experienced instructors delivering our lessons. We hope that making this “the new normal” will encourage even more collaboration on the content and delivery of our lessons.

7 Example: lesson templates
Section 2.5 mentioned that we have spent more time wrangling over technical details (“bikeshedding”) than we should have, at the expense of discussing pedagogy and lesson content. The prime example of this is probably the way we format our lessons: we have invested hundreds of hours in debating and implementing various options. Over the years, we have tried the following:

• HTML. People (rightly) complained about editing HTML tags was annoying, and about maintaining forward/backward links and glossary entries by hand.
• XML with a custom translation tool. This had all the disadvantages of HTML, with extra overhead of maintaining the XML-to-HTML translation tool.
• A wiki. The tool used didn’t handle concurrent edits gracefully, and didn’t provide any mechanism for prepublication review. We could live without the former if the latter worked, but the wiki tools available at the time also didn’t provide a way to indicate the semantics of specific regions, e.g., to signal that this part of the lesson was the objectives, while that was an exercise.
• All lessons in one big repository. This was unsatisfactory for (at least) three reasons:
 1. Putting everything in one repository made that repository uncomfortably large to clone.
 2. If people subscribed to notifications for the repository, they were inundated with notices about changes to lessons they didn’t care about.

At the same time, we experimented with using http://jupyter.org/ to author lessons. Notebooks are a wonderful tool for doing real scientific work, but less well suited to large-scale collaboration. In particular, while it’s possible for experienced users to diff and merge Jupyter Notebooks, it is intimidating and error-prone for newcomers (particularly in the face of embedded images) (The irony of telling people not to use “binary” formats like Microsoft Word for documents because they don’t play nicely with version control, and then using a format that is almost as awkward, did not escape our users. .).

• Markdown and HTML in a single GitHub repository per lesson with a custom build. Markdown files in the gh-pages branch of a GitHub repository will be automatically translated into HTML using a tool called Jekyll, and those HTML pages will then be published as a website. This is great—except that Jekyll can’t translate Jupyter Notebooks or R Markdown files, so we have to pre-process those and commit the results to the repository. We decided that if we’re doing that, we might as well go the whole way, i.e., generate the HTML ourselves and commit that to the gh-pages branch rather than run Jekyll on the server at all.

Another problem is that many things can only be expressed in Markdown by using HTML directly. In particular, there is no way to create div elements to represent things like callout boxes, exercises, lesson goals, and so on. We have resorted to using blockquotes for all of these, with some post-processing and CSS tricks to get the appearance we want.

Our next step (which we plan to implement in December 2015) is to take advantage of some of the extra features of one of the dialects of Markdown that Jekyll supports to solve the styling problem, so that we can store only the Markdown files in the GitHub repository, rather than the generated HTML. This will simplify things for newcomers, but we will still need custom build steps to handle Jupyter Notebooks, R Markdown, and other file formats, and the intermediate files produced by those build steps will still need to be kept in the repository.

Stepping back, what we have learned from wrangling formats is:

1. There are no good answers. Every currently-available option for publishing moderately complex material (such as lessons and scientific papers) is broken in some way.
2. Fixing things is often a mistake. Or rather, fixing things frequently is: as one of our instructors pointed out in the summer of 2015, every time he had taught a workshop in the previous three years, the process for setting up, formatting lessons, and so on had changed. We are now committed to updating our templates and processes no more than once a year.
3. The best templates and platforms in the world won’t make writing lessons easy. The best we can hope to achieve is to make it less hard.

8 TODO
We’ve learned a lot, and we’re doing a much better job of reaching and teaching people than we did three years ago, but there are still many things we need to improve.

8.1 Long-term assessment
Our biggest challenge is figuring out whether we are actually helping scientists get more science done, and if so, how, and how much. 5–8 seem to show that we are, but we have not yet done a large-scale, long-term follow-up. This is partly because of a lack of resources, but it is also a genuinely hard problem: no one knows how to measure the productivity of programmers, or the productivity of scientists, and putting the two together doesn’t make the unknowns cancel out.
8.2 Too slow and too fast

Our second biggest challenge is the diversity of our learners’ backgrounds and skill levels. No matter what we teach, and how fast or how slow we go, 20% or more of the room will be lost, and there’s a good chance that a different 20% will be bored.

The obvious solution is to split people by level, but if we ask them how much they know about particular things, they regularly under- or over-estimate their knowledge. We have therefore developed a short pre-assessment questionnaire that asks them how easily they could do a small number of specific tasks. It is useful, in that it gives instructors some idea of who they’re going to be helping, but we have done nothing to validate the questions themselves, i.e., to ensure that respondents are interpreting them the same way that we are, or that their categorization of respondents corresponds in any meaningful way to actual proficiency. As mentioned in Section 8.1, we have been trying for several years to find the support needed to do rigorous assessment of this and other aspects of our program, but if funders are reluctant to invest in training, they are doubly reluctant to invest in measuring its effects.

8.3 “Is it supposed to hurt this much?”

Third, getting software installed is often harder than using it. This is a hard enough problem for experienced users, but almost by definition our audience is inexperienced, and our learners don’t (yet) know about system paths, environment variables, the half-dozen places configuration files can lurk on a modern system, and so on. Combine that with two versions of Mac OS X, three of Windows, and two oddball Linux distributions, and it’s almost inevitable that every time we introduce a new tool, it won’t work as expected (or at all) for at least one person in the room. Detailed documentation has not proven effective: some learners won’t read it (despite repeated prompting), and no matter how detailed it is, it will be incomprensible to some, and lacking for others.

8.4 Editors

Editing text should be a minor problem, but if you’re standing in class telling three sets of users, “Now open Notepad++ if you’re on Windows, or Kate if you’re on Linux, or TextMate if you’re on a Mac, or whatever you want to use if you’re more advanced”, and then demonstrate with whichever you have on your laptop (which looks different from what half of your learners are sitting in front of), you will cause mass confusion.

We therefore still use http://www.nano-editor.org/ as an editor in class, even though none of our instructors use it for real work. Arguments over this are another example of the bikeshedding discussed in Section 7: many people who are passionate about programming are also passionate (some might say “zealous”) about their favorite editor, and will argue about the relative merits of various choices at length.

The choice of editor is also an example of expert blind spot. People who know a subject well often have trouble re-imagining it through novice eyes, and hence underestimate how difficult “simple” tasks actually are for newcomers. For example, every reasonably experienced user of the shell knows that an editor can run inside a terminal window, so that a single fixture on the screen can play multiple roles. This is not obvious to newcomers, who are frequently confused when instructors move back and forth between an editor and a regular shell prompt in a single window.

8.5 Testing

We believe that software testing is important, but no longer include it in our core curriculum. The reason is that while it’s easy to teach the mechanics of using a unit testing framework (https://en.wikipedia.org/wiki/XUnit), we do not know what tests to tell learners from dozens of different disciplines to write for their (very diverse) programs. In addition, while most research communities have a collective notion of what is “close enough” for laboratory work (“Physicists worry about decimal places, astronomers worry about the exponent, and economists are happy if they’ve got the sign right.”), similar heuristics have not yet emerged for key aspects of computational work. An attempt in 2014–15 to collect examples of actual tests from different domains didn’t achieve critical mass, but we hope to take another run at doing this.

8.6 Watching vs. doing

We try to make our teaching as interactive as possible, but we still don’t give learners hands-on exercises as frequently as we should. We also don’t give them as diverse a range of exercises as we should. This is simply due to a lack of time: two eight-hour days are as much as learners’ brains can handle, but not nearly enough to give them all the practice they need.

There is also a constant tension between having students do real- istic exercises drawn from actual scientific work-flows, and giving them tasks that are small and decoupled, so that failures are less likely and don’t have knock-on effects when they occur. This is exacerbated by the diversity of learners in the typical workshop.

8.7 Less of a problem

One issue which is less of a problem than it used to be is financial sustainability. The “host site covers costs” model scales naturally with the number of workshops, while a growing number of organizations are keen to partner with us, primarily to build local capacity to run more work-shops when and as needed. While we do not wish to tempt fate, the Software Carpentry Foundation does seem to be headed toward financial stability.
9 Conclusions
To paraphrase William Gibson, the future is already here: it’s just
that the skills needed to implement it aren’t evenly distributed.
A small number of scientists can easily build an application that
scours the web for recently-published data, launch a cloud comput-
ing node to compare it to home-grown data sets, and push the result
to a GitHub account; others are still struggling to free their data
from Excel and figure out which of the nine backup versions of their
paper is the one they sent for publication.

The fact is, it’s hard for scientists to do the cool things their col-
leagues are excited about without basic computing skills, and
impossible for them to know what other new things are possible.
Our ambition is to change that: not just to make scientists more
productive today, but to allow them to be part of the changes that
are transforming science in front of our eyes. If you would like to
help, we’d like to hear from you: please mail us at admin@soft-
ware-carpentry.org.

10 Data availability
F1000Research: Dataset 1. Cumulative Number of Workshops over
Time, 10.5256/f1000research.3536.d111654

F1000Research: Dataset 2. Cumulative Number of Workshop
Attendees over Time, 10.5256/f1000research.3536.d111655

F1000Research: Dataset 3. Cumulative Number of Qualified
Instructors over Time, 10.5256/f1000research.3536.d111656

Competing interests
The author is an employee of the Software Carpentry Foundation.
Over the years, Software Carpentry has received support from the
organizations listed in Section 2.3 and Table 1, and from
The Mathworks, Enthought Inc., Continuum Analytics, the Sloan
Foundation, and the Mozilla Foundation.

Grant information
Software Carpentry is not currently supported by grants.

Acknowledgements
The author wishes to thank Brent Gorda, who helped create Soft-
ware Carpentry sixteen years ago; the hundreds of people who have
helped organize and teach workshops over the years; and the thou-
sands of people who have taken a few days to learn how to get more
science done in less time, with less pain.

References

 Reference Source
 and use scientific software? In Second International Workshop on Software
 Publisher Full Text
 Publisher Full Text
 Reference Source
 Reference Source
7. Schossau J, Wilson G: Which sustainable software practices do scientists find
 most useful? In Proc 2nd Workshop on Sustainable Software for Science: Practice
 and Experience. 2014.
 Reference Source
 Reference Source
9. Wilson GV: What should computer scientists teach to physical scientists and
 engineers? IEEE Computational Science and Engineering. Summer and Fall, 1996;
 Publisher Full Text
 94(1): 5.
 Publisher Full Text
11. Wilson G: Software carpentry: getting scientists to write better code by making
 Publisher Full Text
 Reference Source
 Reference Source
 Reference Source
 Reference Source
16. Guzdial M: Why is it so hard to learn to program? In Andy Oram and Greg
 Reference Source
 Annual International ACM Conference on International Computing Education
 Publisher Full Text
 Publisher Full Text
 Publisher Full Text
 Reference Source
 Reference Source
 Education Research Workshop. Association for Computing Machinery, 2007;
 182–196.
 Publisher Full Text
 185–190.
 Publisher Full Text
24. Stross R: What has driven women out of computer science? New York Times,
 Reference Source
 Reference Source
 2016.
 Data Source
 2016.
 Data Source
 2016.
 Data Source
Open Peer Review

Current Referee Status: ✔️ ✔️ ✔️

Version 1

Referee Report 24 March 2014

doi:10.5256/f1000research.3787.r3816

Hilmar Lapp
National Evolutionary Synthesis Center (NESCent), Durham, NC, USA

The article describes some of the origins, driving motivations and lessons learned over the more than 15 years of iterative improvements and reboots of Software Carpentry, a brand of (meanwhile) travelling workshops teaching fundamental best practices in software engineering to programming scientists.

Software Carpentry has received wide acclaim, and helps fill critical gaps in a time when creating and using computational tools is becoming indispensable to increasingly many scientific fields. As such, the topic is of broad interest without question. The text is well-written, and in most places well argued. My only two overarching critiques are (1) that the author in some places seems to conflate cause and effect; and (2) that in some places I feel the reader is left hanging with a too little information. However, none of these rise to the level of calling into question the validity of the overall conclusions, and thus don't exceed what one might call "minor revisions".

Since this is an open review, I have chosen to record my detailed comments as public text annotations, using the Hypothes.is (http://hypothes.is) platform, with a transcription also provided below. A PDF version of the comments is also available. The Hypothes.is version of these comments can be accessed at this URL:

https://hypothes.is/stream#?user=hlapp&uri=http%3A%2F%2Ff1000research.com%2FArticles%2F3-62%2Fv

Unfortunately, the ordering of the comments on Hypothes.is appears to be in reverse chronological order (most recent first), and the comments should therefore be read last to first to align with reading the text start to end.

Any comments or replies to these comments should be made using the F1000Research ‘Add yours’ option but could also be added to Hypothes.is directly if desired.

Introduction

1. Paragraph 1: “hardware and algorithms are only two sides of the iron triangle of programming”

 Is there a reference for this form of the Iron Triangle? Googling the phrase only turns up the well-known project management Iron Triangle, and its adaptation to software projects. The latter has Resources, Scope, and Time at its corners, not hardware, algorithms, and programming.
2. Paragraph 1: “desktop majority”

Do you mean the complement to those doing HPC? The phrase strikes me as needlessly cryptic. And are you sure that scientists developing HPC software are exempt from the trend you describe?

3. Paragraph 2: “rarely if ever shown how to design a maintainable program in a systematic way”

Are they not in fact taught, even if only indirectly, that programs are typically not revisited again once passed on (to the course instructor, for example), and hence thinking about maintainability is wasted effort?

4. Paragraph 3: “learning, and applying”

Assuming that learning binds to at least some of what we taught as well, the comma is extraneous. Or add a comma after “and applying”.

5. Paragraph 4: “many researchers still find it hard to apply what we teach”

Researchers at-large, or researchers who participated in a Software Carpentry workshop?

From red to green

Version 1: Red light

1. Paragraph 1: “i.e., to parallelize complex programs”

This seems more an example to me than a restatement of run before they could walk. Thus, this should be “e.g.” (or spelled out “for example”).

2. Paragraph 2: “(then director of the Advanced Computing Laboratory at Los Alamos National Laboratory)”

Change parentheses to comma. The parenthetical phrase is important to make sense of the sentence. (And if similar contextual information can be given about Brent Gorda, i.e., information that helps to understand why he was invited, I suggest that be added too, as his current affiliation fails to explain that.)

3. Paragraph 2: “In response, John Reynders (then director of the Advanced Computing Laboratory at Los Alamos National Laboratory) invited the author and Brent Gorda (now at Intel) to teach a week-long course on these topics to LANL staff. The course ran for the first time in July 1998, and was repeated nine times over the next four years.”

I suggest that the author highlights the major ways in which these courses differ from the SwC courses run today. As written now, deducing that from the two lessons learned is left as an exercise to the reader, and only those already familiar with SwC will know that indeed today's SwC workshops do differ in these ways.

Versions 2 and 3: Another red light
1. Paragraph 2: “(even though a significant minority of their students, particularly those coming from non-CS backgrounds, have no more experience of practical software development than the average physicist)”
 Remove parentheses.

2. Paragraph 2: “In the absence of an institutional mechanism to offer credit courses at some inter-departmental level, this course, like many other interdisciplinary courses, fell between two stools.”
 Perhaps this would be beyond the scope of the paper as a commentary, but it would be interesting to see whether this is then different at decidedly interdisciplinary programs, for example programs interfacing computational biology / computer science / math.

3. Paragraph 3: “It works too well to be interesting”
 Based on context, “it” would be the SwC workshop or material. I suggest to reword so it is clear that it actually refers to the practices and tools being taught by SwC.

4. Paragraph 3: “As long as universities reward research first, and supply teaching last, it is simply not in most computer scientists own best interests to offer this kind of course.”
 If this is the main driver behind this kind of course not finding interest at university CS programs, is the situation then different at teaching-focused schools, such as small liberal arts colleges? There are small liberal arts colleges with strong CS programs; have they indeed been more welcoming to adopting SwC into their curricula?

5. Paragraph 4: “This is partly because educators’ preferred file formats (Word, PowerPoint, and PDF) can’t be handled gracefully by existing version control systems, but more importantly, there simply isn’t a “culture of contribution” in education for projects like Software Carpentry to build on”
 I'm not convinced that one isn't mostly or entirely a consequence of the other. Open source and collaborative development also was far less widespread in scientific software development before many of the barriers to that were significantly reduced by distributed version control such as Git, and usability and social coding focused resources such as Github. If the tools and file formats that are most widely used are simply refractory to collaboration, it's not a surprise if then a culture of collaboration is rare.

6. Paragraph 7: “The sweet spot for this kind of training is therefore the first two or three years of graduate school. At that point, students have time (at least, more time than they’ll have once they’re faculty) and real problems of their own that they want to solve.”
 Perhaps it's primarily the “real problems of their own” that provide the motivation for having the time (to learn about addressing them). I.e., percentage-wise, how many students does SwC get today who take the course primarily because they have time, and who do not yet have real problems of their own for which they hope to learn solutions?
 More importantly perhaps, does this not also point out a path for justifying the inclusion of SwC-inspired teaching units into undergraduate CS curricula? While for some (or most?) academic
research career paths the relevance of version control mastery is perhaps less obvious, it's a qualification nearly all of industry ask of CS graduates applying for a software engineer position.

Version 4: orange light

1. Paragraph 1: “The author rebooted Software Carpentry in May 2010 with support from Indiana University, Michigan State University, Microsoft, MITACS, Queen Mary University of London, Scimatic, SciNet, SHARCNet, and the UK Met Office.”

The backstory to what motivated (or necessitated?) the large consortium of funders is missing here. However, given the last paragraph in this section, it seems there would be interesting aspects of it that would help make setting up the argument. Does the large consortium reflect primarily wide buy-in to SwC’s utility, or primarily the difficulty of obtaining enough funding from any one institution or partner? The last paragraph suggests it’s the latter, but it's not clear.

2. Paragraph 1: “MOOC”

Spell out at first use.

3. Paragraph 2: “Open access publishing, crowd sourcing, and dozens of other innovations had convinced scientists that knowing how to program was now as important to doing science as knowing how to do statistics.”

Is there evidence or references for the factors the author enumerates constituting the major driving causes? More specifically, the list is conspicuously missing the explosion of data that had swept, and has continued to sweep into almost every scientific discipline. Data richness is enormously powerful for science, yet wrestling insight from it at this scale invariably and pervasively requires computational processing. Maybe this is part of the “dozens of other innovations”, but I would still argue that the data deluge has constituted a primary rather than a marginal driver of this landscape change.

4. Paragraph 4: “Most importantly, the MOOC format didn’t work”

I think it’s worth to qualify this statement in respect to the goals. As the paragraph goes on, it could be said that in some definition the MOOC format has worked (for example, compared to retention and completion rates of other MOOCs); the failure that the author reports presumably means chiefly that the goals laid out for a SwC course weren’t met by the MOOC format.

5. Paragraph 5: “The biggest take-away from this round was the need come up with a scalable, sustainable model. One instructor simply can’t reach enough people, and cobbling together funding from half a dozen different sources every twelve to eighteen months is a high-risk approach.”

For readers who aren't already fully on board with this, It would help to better set up the argument. Why is scaling up the model desirable or necessary? What is enough people? Couldn't funding also come from a single or few sources? Many courses are sustained by student tuition; how would this likely not work for SwC?
1. **Paragraph 1: “and backing from the Mozilla Foundation”**

 The difference in wording suggests that the Mozilla Foundation's backing didn't come in the form of a grant. Can it be spelled out (at least broadly) what that support consisted of?

2. **Paragraph 1: “This time, the model was two-day intensive workshops”**

 I'm curious as to why 2 days. The lessons learned stated earlier seem to say that attention drops after 3 days, not 2 days. Why was the decision made to shorten to 2 days, not 3 days?

3. **Paragraph 1: “The Hacker Within”**

 Is there no link or other reference available?

4. **Paragraph 3: “Switching to a “host site covers costs” model was equally important: funding is still needed for the coordinator positions (the author and two part-time administrative assistants at Mozilla, and part of one staff member's time at the Software Sustainability Institute in the UK), but our other costs now take care of themselves.”**

 I'd find it really useful to spell this out a little more. What are “our other costs”? Instructor travel and expenses, room rental? What tasks do the coordinators perform, how does this scale? Or in other words, presumably there is a division between costs of operating that benefit from economies of scale, and those that do not. More insight into this division would be quite helpful as a lesson learned.

5. **Paragraph 4: “have grown steadily (Figure 1 and Figure 2).”**

 The figures suggest a tapering off in the recent past. Is this more likely a fluke due to limited or censored data, or is there a trend showing?

6. **Figure 2: “Enrolment”**

 Typo (one instead of two 'l')

7. **Description of Figshare Data: “Hopefully these two effects more or less cancel out and should not detract from the overall trend displayed.”**

 Hope is nice but not a good basis on which to base scientific conclusions. Do you have evidence that suggests that neither fraction of people is significant with respect to those enrolled and attending both days? Evidence that both fractions of people has stayed relatively constant over time, and not changed more recently?

8. **Paragraph 5: “80–90% of attendees typically report”**

 What does typically mean? 80-90% of all SwC enrolled students, or on average 80-90% of those enrolled in a workshop? I.e., how much variance is there between workshops?
What we do

1. Paragraph 5: “While some people feel that using R instead of Python is like using feet and pounds instead of the metric system”

 I have heard concerns and objections some people have with R’s syntax and way of doing things. But every language (including Python) has its detractors, and I don’t think the particular concerns with R are necessarily widely known let alone understood. So I would suggest to either delete this clause (is it really needed for the argument?), or if chosen to be left in place, to substantiate it, at least by giving a reference to a fuller discussion of R’s problems.

2. Paragraph 5: “now that we have enough instructors to be able to specialize”

 It’s probably not just a question of having instructors, but also of having demand for (and thus acceptance of) the SwC curriculum as useful in increasingly many disciplinary areas.

3. Paragraph 6: “with the best”

 Insert “even” before “with”.

4. Paragraph 7: “As this is usually several times more than a small registration fee would bring in, we usually choose the higher no-show rate as the lesser evil.”

 The biggest problem of a significant rate of no-shows is probably the fact that due to the space limitations other students who would have and benefitted from the course had to be denied because of the no-shows taking the space away. Have other possibilities to deter no-shows been explored (and if so, how effective have they been found)?

 If the no-show rate is somewhat predictable (and it sounds like it is), then wait-listed students could be told to show up anyway on the day of the course, because there would likely be enough no-shows to make room for them. Has this been tried, and to what extent does it work?

5. Paragraph 9: “What does require permission is use of our name and logo, both of which are trademarked. We are happy to give such permission if we have certified the instructor and have a chance to double-check the content, but we do want a chance to check: we have had instances of people calling something “Software Carpentry” when it had nothing to do with what we usually teach. We’ve worked hard to create material that actually helps scientists, and to build some name recognition around it, and we’d like to make sure our name continues to mean something.”

 This whole paragraph doesn't mention the words "brand", “brand recognition”, and “brand reputation”; yet it is essentially about those concepts, isn’t it? Why not say it directly?

Small things add up

Use what we teach

1. Paragraph 1: “The (considerable) downside is that it can be quite difficult for newcomers to contribute material; we are therefore working to streamline that process.”
This needs some qualification to fully make sense as following from the preceding sentence. If the tools and approaches SwC teaches are good ones that “work”, and SwC uses those tools and approaches itself, how can this be a downside, presuming that those able to contribute material are in fact familiar with those tools and approaches. I can imagine some ways in which this can still be a downside, but for clarity this should be spelled out better.

Keep experimenting

1. Paragraph 3: “DiRAC”

Spell out. Also, how about a URL?

2. Paragraph 5: “Many of our instructors also teach regular university courses, and several of them are now using part or all of our material as the first few lectures in them.”

Isn't this somewhat contradicting some lessons learned stated earlier, which seemed to say that for several reasons the SwC curriculum faces impossibly high barriers for integration into university curricula, at least in the current environment. If contrary to expectation this has now become possible, can something be learned from the cases where it has been successfully integrated?

TODO

Long-term assessment

1. Paragraph 1: “no one knows how to measure the productivity of programmers, or the productivity of scientists”

I think this assertion needs better qualification to be really justified. Obviously, several ways to assess programmer productivity, and also scientist productivity, exist. Hiring and tenure committees regularly assess productivity of scientists. Arguably, the ways this is usually done suffers from various problems such as failing to encompass the full spectrum of products resulting from a scientist's work. Perhaps the author means that it is some of these shortcomings of current productivity assessment methods that effectively prevent measuring the productivity impact of SwC's teachings, but that needs to be spelled out better.

“Is it supposed to hurt this much?”

1. Paragraph 2: “naive”

Is this meant to be “native”?

Teaching on the web

1. Paragraph 1: “The fact that this is also true of most high-profile MOOCs is little comfort.”

If your goal is a high rate of retention and completion, that is. However, widening reach could also be a worthwhile goal. If a single MOOC reaches 10,000 students instead of 800 students reached by 20 physical SwC workshops, even a completion rate of only 10% will still have taught more students with the single MOOC than with the 20 physical workshops. MOOCs clearly aren't a panacea, and they may indeed be ill-suited to the learning objectives of SwC, but that and why this
is so needs a little more depth to be convincing.

What vs. how

1. Paragraph 2: “don't as good a job”

 Insert “do” after “don’t”.

2. Paragraph 2: “xUnit-style framework”

 I’m embarrassed to ask what's an xUnit style framework. Spell out what that is, and/or add a reference or URL?

Standardization vs. customization

1. Paragraph 1: “However, we do need to be more systematic about varying our content on purpose rather than by accident.”

 As a reader, I feel left hanging by the section ending with this statement. Are there ideas about how this could be done, and to begin with, what were some of the problems encountered with the less systematic approach being practiced now? (The preceding text seems to only cite advantages.)

Watching vs. doing

1. Paragraph 1: “We also don't give them as diverse a range of exercises as we should, and those that we do give are often at the wrong level.”

 How do you know that this is the case? From feedback alone, or are there other kinds of observations or evidence?

2. Paragraph 2: “though we hope that will diminish as we organize and recruit along disciplinary lines instead of geographically”

 Aren't you arguing above that diversity of backgrounds and starting skills is a constant challenge? It didn't seem from earlier arguments in the text that simply recruiting along a uniform discipline will address this problem.

Better teaching practices

1. Paragraph 1: “We do our best to cover these ideas in our instructor training program, but are less good about actually applying them in our workshops.”

 Is there some insight available into why instructors find it difficult to apply what they have been taught? Is it the imparting of these ideas that needs improvement, or are the ideas not as applicable in SwC as they were thought to be, or is there simply heterogeneity in that some ideas are much easier to apply than others? If the latter, which ones fall into which category?

Conclusions
1. Paragraph 1: “To paraphrase William Gibson”

I notice that it's not clear to what exact piece or event to source this. Perhaps still link to the William Gibson Wikiquote page, which includes the quote and its provenance?

Competing Interests: Greg Wilson is one of my collaborators on Data Carpentry, a fledgling offshoot of Software Carpentry aiming to teach best practices for data management.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Referee Report 26 February 2014

doi: 10.5256/f1000research.3787.r3815

Philip Guo
Department of Computer Science, University of Rochester, Rochester, NY, USA

This article is a retrospective on the past 15 years of the author leading the Software Carpentry effort to educate scientists about the practical value of computational tools. It also describes a set of instructional practices that have worked well (and some that have not worked so well) in this setting. It concludes with ongoing and future work to scale up Software Carpentry in light of large variations in instructor and student backgrounds, and continual changes in modern computational tools.

This article is a great fit for F1000 due to the topic's relevance to researchers in life sciences (and across a diverse array of science fields), and to the author's cogent firsthand accounts of his experiences and reflections on a subject matter which he is well-suited to discuss.

My main high-level comment is that the language is colloquial in many parts of this article, with lots of asides enclosed (in parentheses). That is probably fine for an opinion-based article, and it makes the writing more personal and approachable. But the author should be aware that this is how the article appears to a first-time reader.

Here are some more detailed comments, none of which are pressing:

- "From red to green" -- it took me a while to understand the "red", "orange", "green" light analogy the author was making in this section. That seems to be culturally specific. (I don't think I've seen an orange traffic light.)

- "Versions 2 and 3: Another red light" - I didn't understand why these were two separate versions. Maybe it's simpler just to call this Version 2 and update the subsequent version numbers?

- "It works too well to be interesting" -- This blurb felt a bit harsh toward CS professors. It makes it sound like they teach only topics that lead to new publishable research. In my experience, teaching and research are fairly decoupled, so professors have no qualms about teaching materials from, say, 30-year-old compilers or databases textbooks, which are obviously not leading to new research. Perhaps a more likely explanation, which the author points out later in the article, is that there simply isn't room in CS curricula to offer these sorts of Software Carpentry-like materials, and nobody vouches strongly enough for them.
Typo in caption: "Enrolment figures" -> "Enrollment figures"

"What we do" - "Day 1 a.m.", etc. -- that's hard to parse. I thought the author meant "1am" like they were offering a class at 1 in the morning. Same with "1pm", "2am", "2pm". "Day 1 - morning" would be clearer.

"during the practical" - I'm not familiar with this phrase. Is that a typo, or a figure of speech?

"It's a refreshing change from teaching undergraduate calculus." -- would Software Carpentry instructors ordinarily teach calculus? Seems more like they would be teaching physics or programming or something.

Competing Interests: I have served as a volunteer helper in a Software Carpentry course. I was not paid for my participation, nor do I have any financial relationship with Software Carpentry.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Juha Sorva
Department of Computer Science, Aalto University, Espoo, Finland

This is an insightful and well-written commentary on a timely topic. The article documents the past and present practices of Software Carpentry - a project for teaching scientists about computing - and reflects on the project's successes and failures. In doing so, it provides concrete examples of the teaching practices used as well as those discarded. Moreover, the article helps the reader to understand how teaching scientists to about computing is different from teaching computer science majors - a matter that is central to the efforts of Software Carpentry and to the interests of the growing numbers of scientists who need computing skill to work efficiently.

The commentary is well grounded in evidence from the research literature as well as the author's lengthy experience with the project. The achievements and challenges of Software Carpentry are discussed realistically and critically.

Additional comment: There is only so much you can learn in two days (the length of Software Carpentry's current workshops), and whatever you learn in that time is unlikely by itself to change your research practices dramatically. What would be interesting to know in the future is whether and how the workshop participants go about building their computing skills after attending a workshop.

Competing Interests: I have participated in a project (a collaboratively authored book on learning) led by the author of the commentary.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
Discuss this Article

Version 2

Reader Comment 16 Feb 2016

David Eyers, University of Otago, New Zealand

This comment relates to presentation glitches and not the content of the paper. I've checked that the issues are present in version 2 (some others were fixed going from version 1 to version 2). The page numbers shown are with respect to the V2 PDF.

- Page 8: within "4.2 Live coding" "instructors’s mistakes" should be "instructors’ mistakes"
- Page 8: "Some instructors use VPS over SSH"—what is the term VPS referring to? It only occurs once in the document. Virtual private servers?
- Page 8: "This solve the installation issues" should be "This solves the installation issues"
- Page 10: "People (rightly) complained about editing HTML tags was annoying"—this does not parse comfortably.

As a minor point, there's a mix between use of dashes and approximation of dashes with hyphens (possibly due to a mix of authorship tools and/or authors?). For example, "University of Wisconsin - Madison" (p3) and "2-4 hours/week" (p9) both non-ideal, versus "This is great—except that" (p10) and "2014–15" (p11), which are typeset more appropriately.

Competing Interests: No competing interests were disclosed.

Version 1

Reader Comment (F1000Research Advisory Board Member) 29 Dec 2014

Kevin J Black, Department of Psychiatry, Washington University in St Louis, USA

"A small number of scientists can easily build an application that scours the web for recently-published data, launch a cloud computing node to compare it to home-grown data sets, and push the result to a GitHub account; others are still struggling to free their data from Excel and figure out which of the nine backup versions of their paper is the gone they sent for publication."

This quote is not only spot-on, it is brilliantly phrased. I would add that software design knowledge is spotty within as well as across scientists. I'm an example. I do brain imaging research. On the one hand, I took a numerical methods class in college, I have written programs over the years in FORTRAN, Smalltalk, Pascal, and C, and have written and used shell scripts (csh) a good bit; I have tried to implement principles from object-oriented programming and "design by contract," I understand what a relational database is and have made some in Access, I have a Github account, and I've tried to do things at work with R and Python. But on the other hand, the pretest in this article shows that I can't put most of those together usefully.

I tripped across the Software Carpentry web site a month or two ago, and I thought it was the best short
introduction ever to show why the concepts they teach are so important for creating useful (reliable, reusable, pragmatic) software. Thank you for this work!

Competing Interests: None.