REVIEW
The academic, economic and societal impacts of Open Access: an evidence-based review [version 1; referees: 4 approved, 1 approved with reservations]

Jonathan P. Tennant, François Waldner, Damien C. Jacques, Paola Masuzzo, Lauren B. Collister, Chris. H. J. Hartgerink

1Department of Earth Science and Engineering, Imperial College London, London, UK
2Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
3Medical Biotechnology Center, VIB, Ghent, Belgium
4Department of Biochemistry, Ghent University, Ghent, Belgium
5University Library System, University of Pittsburgh, Pittsburgh, PA, USA
6Department of Methodology and Statistics, Tilburg University, Tilburg, The Netherlands

Abstract
Ongoing debates surrounding Open Access to the scholarly literature are multifaceted and complicated by disparate and often polarised viewpoints from engaged stakeholders. At the current stage, Open Access has become such a global issue that it is critical for all involved in scholarly publishing, including policymakers, publishers, research funders, governments, learned societies, librarians, and academic communities, to be well-informed on the history, benefits, and pitfalls of Open Access. In spite of this, there is a general lack of consensus regarding the advantages or disadvantages of Open Access at multiple levels. This review aims to: to be a resource for current knowledge on the impacts of Open Access by synthesizing important research in three major areas of impact: academic, economic and societal. While there is clearly much scope for additional research, several key trends are identified, including a broad citation advantage for researchers who publish openly, as well as additional benefits to the non-academic dissemination of their work. The economic case for Open Access is less well-understood, although it is clear that access to the research literature is key for innovative enterprises, and a range of governmental and non-governmental services. Furthermore, Open Access has the potential to save publishers and research funders considerable amounts of financial resources. The social case for Open Access is strong, in particular for advancing citizen science initiatives, and leveling the playing field for researchers in developing countries. Open Access supersedes all potential alternative modes of access to the scholarly literature through enabling unrestricted re-use, and long-term stability independent of financial constraints of traditional publishers that impede knowledge sharing. Open Access remains only one of the multiple challenges that the scholarly publishing system is currently facing. Yet, it provides one foundation for increasing engagement with
researchers regarding ethical standards of publishing. We recommend that Open Access supporters focus their efforts on working to establish viable new models and systems of scholarly communication, rather than trying to undermine the existing ones as part of the natural evolution of the scholarly ecosystem. Based on this, future research should investigate the wider impacts of an ecosystem-wide transformation to a system of Open Research.

Keywords
Open Citation Advantage, Altmetrics, Open Access, Publishing, Copyright, Incentive System, Citations

Corresponding author: Jonathan P. Tennant (jon.tennant.2@gmail.com)

Competing interests: JPT currently blogs for the PLOS Paleo Community, and works for ScienceOpen. CHJH is a Center for Open Science ambassador. DCJ and FW are members of the Open Access Working Group of EURODOC. PM is a Research Data Alliance member. LBC works for the University of Pittsburgh, which has an Open Access library publishing department. All views presented here are strictly personal.

Grant information: This research was partly funded by the Belgian National Fund for Scientific Research through a FRIA grant. PM acknowledges support from the European Commission Horizon 2020 Programme under Grant Agreement 634107 (PHC32-2014) ‘MULTIMOT’.

Copyright: © 2016 Tennant JP et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Tennant JP, Waldner F, Jacques DC et al. The academic, economic and societal impacts of Open Access: an evidence-based review [version 1; referees: 4 approved, 1 approved with reservations] F1000Research 2016, 5:632 (https://doi.org/10.12688/f1000research.8460.1)

Introduction

Open Access (OA) refers to the removal of major obstacles to accessing, sharing and re-using the outputs of scholarly research. The rationale is that the research process is facilitated by ensuring rapid and widespread access to research findings such that all communities have the opportunity to build upon them. Reflecting this ambition, there are currently over 700 OA policies and mandates recorded worldwide from a range of research institutes and funding bodies (roarmap.eprints.org). OA pertains only to documents made available via two main pathways: the ‘Gold’ route and the ‘Green’ route (Harnad et al., 2008). The Gold route refers to freely accessible research articles at the point of publication. This route is often, but not always, accompanied by article processing charges (APC). The Green route refers to author self-archiving, in which a version of the peer-reviewed article is posted online to a repository or website. This route is dependent on journal or publisher policies on self-archiving (sherpa.ac.uk/romeo). Some publishers require an embargo period before deposit in public repositories is allowed. These embargoes are applied in order to avoid putative reductions in subscription income due to such self-archiving. Through these dual pathways, almost 25% of all scholarly documents archived on the Web are now obtainable via OA somewhere on the Internet (Khabsa & Giles, 2014).

A core issue remains: universal or even marginal access to ~75% of articles is not directly possible unless one is in a privileged position to work at an institute which has subscription access to a portion of these articles. A subscription to all peer-reviewed journals is not affordable for any single individual, research institute or university (Odlyzko, 2006). Consequently, the potential impact of research articles is never fully realized, impeding scientific progress by a lack of use, while simultaneously negatively affecting the recognition of individual researchers (Hitchcock, 2013) and the funders who support their work.

Based on these problems, free and unrestricted access to primary research literature has become a global goal of the OA movement. The steady increase in OA over the past two decades has required negotiations with a range of stakeholders (e.g., librarians, funders, academics). Much of the driving force behind this global change has been through a combination of direct, grassroots advocacy initiatives in conjunction with policy changes from funders and governments. The debates regarding the benefits of OA over subscription-based access often hinge on the increased value to academics. However, increased access has broader benefits to research through enhanced visibility, facilitating innovation by businesses, decreasing financial pressure on academic/research libraries (known more broadly as the ‘serials crisis’ (Russel, 2008)), and fostering a culture of greater scientific literacy. OA also includes a moral aspect, where access to scientific knowledge and information is regarded as a fundamental aspect of global human equality. For example, Article 27 of the United Nations Declaration of Human Rights states that “Everyone has the right to freely participate in the cultural life of the community, to enjoy the arts and to share in scientific advancement and its benefits.” (United Nations, 1948).

This review paper aims to provide information on the various benefits and drawbacks of Open Access to scholarly research. We consider the case for OA from the academic, economic, and societal perspectives. In addition, we shortly consider the broader implications of OA on Open Data, a closely related issue, united under a general theme of ‘Open Research’. By aggregating evidence from primary sources, this review should be useful to those more broadly interested in the impact of scholarly research, as well as policymakers and others interested in implementing OA policies and strategies.

A brief history of Open Access

The Open Access movement is intrinsically tied to the development of the Internet and how it redefined communication and publishing (Laakso et al., 2011). With increased availability of Internet bandwidth, print articles have become virtually redundant, and the costs per article potentially decrease as a result of not investing material resources in print publications. As a result, widespread dissatisfaction with the expensive traditional publishing model increased, resulting in the OA movement and concomitant innovations in scholarly publishing.

Interest in using the Internet for opening access to scientific research coalesced throughout the 1990s, culminating with the 2001 conference on “Free Online Scholarship” by the Open Society Institute in Budapest. The result of this conference was the release of the Budapest Open Access Initiative (BOAI), which is recognized as one of the defining points of the OA movement. The BOAI was the first initiative to use the term “Open Access” and articulated the following public definition:

By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited.

One result of the growing OA movement is the rise of OA-only publishers, who publish exclusively digital content and have demonstrated that such a business model is financially sustainable. For example, pioneer OA publishers BioMed Central and the Public Library of Science (PLOS) were founded in the early 2000s and remain successful businesses to date. More recently, OA publishing has gained increasing momentum among researchers, funders, and governments. This has led to a proliferation of innovative approaches to publishing (e.g., PeerJ (peerj.com), F1000Research (f1000research.com), Open Library of Humanities (openlibhums.org)) and a range of different policies from research funders and institutes mandating OA. All of these different policies and new business models, combined with traditional publishers innovating by launching their own OA titles and programs, have made the overall OA ecosystem quite complex.

Even with this growing prevalence of publishers that facilitate Open Access to the scholarly literature, Open Access is hardly
ubiquitous as of yet. Bjork et al. (2009) estimated that in 2006 the total number of published articles that year was approximately 1,350,000. Of these, 4.6% became immediately accessible and an additional 3.5% after an embargo period of, typically, one year. Furthermore, usable copies of 11.3% could be found in repositories or on the home pages of the authors. Since the National Institutes of Health mandated archival of articles in the public PubMed Central repository in 2008, the cumulative number of OA articles in PMC has increased more than the number of non-OA articles (see Figure 1). In 2013, the total percentage of OA articles available was estimated at 24% of English-language scholarly documents accessible on the Web (Khabsa & Giles, 2014).

Table 1 shows a non-exhaustive summary of the developments in the advancement of scholarly publishing and the Open Access movement. Included are the founding of major institutions in the movement as well as policy and legal developments. Several controversial moments are included, because they have spurred action or generated awareness for the movement. An example is the suicide of Aaron Swartz, who was arrested for downloading JSTOR articles on the grounds that he allegedly intended to make these publicly available. Another ongoing controversy is scholarly piracy; this includes the Sci-Hub and LibGen projects, which have created an online repository of pirated scholarly papers. Both gained increased attention after becoming the target of a lawsuit by the publisher Elsevier. There have been mixed responses to these kinds of activities, polarising the view that illegal acts regress or weaken the case for OA, while some hail the development as the ‘Napster moment’ for the OA movement which will force the established industry to change.

The academic case for Open Access
The academic case for OA is two-faceted: (i) it is associated with a higher documented impact of scholarly articles through availability and re-use; and (ii) it non-restrictively allows researchers to use automated tools to mine the scholarly literature. For the former, major arguments in favor of OA include the evidence that work that is openly available generates more academic citations, but also has more societal impact. The latter major argument involves non-restrictive access to the scholarly literature through appropriate licensing, making it possible to use automated tools to collect and analyze the entire body of scholarly literature in a legally sound framework and irrespective of copyright laws. The following sections cover these effects of OA on both the impact of scholarly research and through the mining of scholarly literature.

The impact advantage
Academic impact. Academic impact is frequently measured through citation counts, and these remain fundamental as the ‘currency units’ for researchers, research groups, institutes and universities. Lawrence (2001) was the first to propose that OA would have a citation advantage. The utility and consistency of the citation advantage across different research fields has been intensively debated because its magnitude substantially varies depending on the discipline (Table 2). However, the general tendency from studies to date indicates that there is at least some association between OA publishing and increased citation counts across most disciplines (Antelman, 2004; Hajjem et al., 2006) (Figure 2 and Table 2).

Estimates for the open citation advantage range from +36% (Biology) to +600% (Agricultural Sciences) (Swan, 2010). A longitudinal study Eysenbach (2006) compared the bibliometric impact of a cohort of articles from a multi-disciplinary journal (Proceedings of the National Academy of Sciences) that offers both OA and non-OA publishing options. After adjusting for potentially confounding variables, the results indicated that non-OA papers were twice as likely to remain uncited six months after
<table>
<thead>
<tr>
<th>YEAR</th>
<th>MILESTONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1454</td>
<td>Invention of printing</td>
</tr>
<tr>
<td>1665</td>
<td>January 5: First issue of The Journal des scâvans (later spelled Journal des savants), the earliest academic journal published in Europe and established by Denis de Sallo.</td>
</tr>
<tr>
<td>1807</td>
<td>25-year-old Charles Wiley opens a small printing shop at 6 Reade Street in lower Manhattan.</td>
</tr>
<tr>
<td>1842</td>
<td>May 10: Julius Springer founded what is now Springer Science+Business Media in Berlin.</td>
</tr>
<tr>
<td>1848</td>
<td>John Wiley (son of Charles Wiley) gradually started shifting his focus away from literature toward scientific, technical, medical, and other types of nonfiction publishing.</td>
</tr>
<tr>
<td>1880</td>
<td>Foundation of Elsevier.</td>
</tr>
<tr>
<td>1936</td>
<td>First scientific book published by Elsevier.</td>
</tr>
<tr>
<td>1990</td>
<td>First web page.</td>
</tr>
<tr>
<td>1991</td>
<td>An online repository of electronic preprints, known as e-prints, of scientific papers is founded in Los Alamos by the American physician Paul Ginsparg. It was renamed to ArXiv.org in 1999. The total number of submissions by March 21st, 2016 (after 24.6 years) is 1,127,232 (arxiv.org/stats/monthly_submissions).</td>
</tr>
<tr>
<td>1993</td>
<td>Creation of the Open Society Institute (renamed to the Open Society Foundations [OSF] since 2001) by the progressive liberal business magnate George Soros. The OSF financially supports civil society groups around the world, with a stated aim of advancing justice, education, public health and independent media.</td>
</tr>
<tr>
<td>1997</td>
<td>Launch of SciELO in Brazil. There are currently 14 countries in the SciELO network and its journal collections: Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Mexico, Peru, Portugal, South Africa, Spain, Uruguay, and Venezuela.</td>
</tr>
<tr>
<td>2000</td>
<td>BioMed Central, the self-described first and largest OA science publisher and PubMed Central, a free digital repository for biomedical and life sciences journal, is founded. In 2008, Springer announces the acquisition of BioMed Central, making it, in effect, the world's largest open access publisher.</td>
</tr>
<tr>
<td>2001</td>
<td>An online petition calling for all scientists to pledge that from September 2001 they would discontinue submission of papers to journals which did not make the full-text of their papers available to all, free and unfettered, either immediately or after a delay of several months is released. The petition collected 34,000 signatures but publishers took no strong response to the demands. Shortly thereafter, the Public Library of Science (PLOS) was founded as an alternative to traditional publishing. PLOS ONE is currently the world's largest journal by number of papers published (about 30,000 a year in 2015). December 1–2: Conference convened in Budapest by the Open Society Institute to promote open access – at the time also known as Free Online Scholarship. Where the Budapest Open Access Initiative (BOAI) was born.</td>
</tr>
<tr>
<td>2002</td>
<td>January 14th: Release of the Budapest Open Access Initiative (BOAI), a public statement of principles relating to OA to the research literature. This small gathering of individuals is recognised as one of the major defining events of the OA movement. On the occasion of the 10th anniversary of the initiative, it was reaffirmed in 2012 and supplemented with a set of concrete recommendations for achieving “the new goal that within the next ten years, Open Access will become the default method for distributing new peer-reviewed research in every field and country.” Start of the Research in Health - HINARI programme of the World Health Organization and major publishers to enable developing countries to access collections of biomedical and health literature online at reduced subscription costs. Together with Research in Agriculture - AGORA, Research in the Environment - OARE and Research for Development and Innovation - ARDI programmes, it currently forms Research4Life that provides developing countries with free or low cost access to academic and professional peer-reviewed content online.</td>
</tr>
<tr>
<td>2008</td>
<td>The National Institutes of Health (NIH) Public Access Policy, an OA mandate requiring that research papers resulting from NIH funding must be freely and publicly available through PubMed Central within 12 months of publication, is officially recorded.</td>
</tr>
</tbody>
</table>
Figure 2. Studies that investigated the citation advantage grouped by their conclusion. The majority concluded that there is a significant citation advantage for Open Access articles. Source: Data from The Open Access Citation Advantage Service, SPARC Europe, accessed March 2016.
Table 2. Main scientific papers that have investigated and quantified the citation advantage as well as its origin.

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>DISCIPLINE</th>
<th>CITATION ADVANTAGE</th>
<th>ORIGIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antelman (2004)</td>
<td>Mathematics, Electrical Engineering, Political Science, Philosophy</td>
<td>+91%, +51%, +86%, +45% per discipline respectively</td>
<td>NA</td>
</tr>
<tr>
<td>Atchison & Bull (2015)</td>
<td>Political Science</td>
<td>Statistically significant citation advantage</td>
<td>NA</td>
</tr>
<tr>
<td>Cheng & Ren (2008)</td>
<td>Medicine, Biology, Agricultural Sciences, Chemistry and University Journals</td>
<td>+200%</td>
<td>NA</td>
</tr>
<tr>
<td>Davis & Fromerth (2007)</td>
<td>Mathematics</td>
<td>+35%</td>
<td>Quality advantage, no evidence of early advantage</td>
</tr>
<tr>
<td>Davis et al. (2008)</td>
<td>Physiology</td>
<td>-5%</td>
<td>NA</td>
</tr>
<tr>
<td>Davis (2011)</td>
<td>Sciences, Social Sciences, and Humanities</td>
<td>+1% but statistically indistinguishable</td>
<td>No evidence of an early advantage</td>
</tr>
<tr>
<td>Evans & Reimer (2009)</td>
<td>All</td>
<td>+8% for newly published articles; +16% for citations coming from developing countries</td>
<td>NA</td>
</tr>
<tr>
<td>Eysenbach (2006)</td>
<td>Natural Sciences</td>
<td>+210 up to +290%</td>
<td>NA</td>
</tr>
<tr>
<td>Frandsen (2009)</td>
<td>Biology, Mathematics, Pharmacy and Pharmacology</td>
<td>No clear tendency towards an increase in impact</td>
<td>NA</td>
</tr>
<tr>
<td>Gargouri et al. (2010)</td>
<td>Engineering, Biology, Biomedicine, Chemistry, Psychology, Mathematics, Clinical Medicine, Health, Physics, Social Science, Earth Sciences</td>
<td>+?% to ?% depending on the discipline</td>
<td>Quality advantage is confirmed no evidence for selection bias</td>
</tr>
<tr>
<td>Gaule & Maystre (2011)</td>
<td>Biology</td>
<td>No evidence of citation advantage</td>
<td>NA</td>
</tr>
<tr>
<td>Gentil-Beccot et al. (2010)</td>
<td>High Energy Physics</td>
<td>+200%</td>
<td>Early advantage confirmed</td>
</tr>
<tr>
<td>Hajjem et al. (2006)</td>
<td>Biology, Psychology, Sociology, Health, Political Science, Economics, Education, Law, Business, Management</td>
<td>+36% to 172%</td>
<td>NA</td>
</tr>
<tr>
<td>Harnad & Brody (2004)</td>
<td>Physics</td>
<td>+250% to 580%</td>
<td>NA</td>
</tr>
<tr>
<td>Henneken et al. (2006)</td>
<td>Astronomy and Physics</td>
<td>+200%</td>
<td>NA</td>
</tr>
<tr>
<td>Kousha & Abdoli (2010)</td>
<td>Agricultural Science</td>
<td>+621% but not to every journal</td>
<td>NA</td>
</tr>
<tr>
<td>Kurtz et al. (2005)</td>
<td>Astronomy</td>
<td>None</td>
<td>Selection bias and early advantage</td>
</tr>
<tr>
<td>Kurtz & Henneken (2007)</td>
<td>Astronomy</td>
<td>+200%</td>
<td>Early advantage confirmed</td>
</tr>
<tr>
<td>Lawrence (2001)</td>
<td>Computer Science</td>
<td>+157% up to +284% for top publication</td>
<td>NA</td>
</tr>
<tr>
<td>McCabe & Snyder (2014)</td>
<td>Ecology, Botany, Multidisciplinary Science and Biology</td>
<td>+8%</td>
<td>NA</td>
</tr>
<tr>
<td>McVeigh (2004)</td>
<td>Natural Sciences</td>
<td>Approximately 0–+50% in 2003 depending on field, negative citation advantage in 2000</td>
<td>NA</td>
</tr>
<tr>
<td>Metcalfe (2005)</td>
<td>Astronomy</td>
<td>+200%</td>
<td>NA</td>
</tr>
<tr>
<td>Metcalfe (2006)</td>
<td>Solar Physics</td>
<td>+170% and +260% depending on the online repository</td>
<td>No evidence for selection bias</td>
</tr>
</tbody>
</table>
Despite strong evidence for a citation advantage, the magnitude of this advantage remains variable. The substantial heterogeneity in observed citation advantages can be due to different academic cultures or could simply be spurious. For example, self-archiving prior to publication is a community standard in fields such as high energy physics or mathematics, but has yet to be widely adopted among the life sciences. Such ‘pre-prints’ have also been associated with an overall increase in the average number of citations, the total number of citations, and the speed of citation accumulation (Aman, 2014; Gentil-Beccot et al., 2010). Other studies could only replicate immense citation advantages (+600%) if relevant predictors were omitted (McCabe & Snyder, 2014), which indicates a potential spurious effect. When taking into account these relevant predictors, the citation advantage became much smaller (i.e., +8%).

One alternative explanation for the citation advantage could be that researchers choose to publish OA when a finding is more impactful, but empirical evidence contradicts this selection effect. Gargouri et al. (2010) compared citation counts within a cohort of OA articles that had either been self-selected as OA or mandated as OA (e.g., by funders). The study concluded that both were cited significantly more than non-OA articles. As such, these findings rule out a selection bias from authors as the cause for the citation advantage (Gargouri et al., 2010).

In sum, evidence indicates that OA is broadly related to increased academic impact as assessed through citations (Figure 2; see also McKiernan et al., 2016), but given the large variability in results, further research should aim to synthesize these results in a meta-analysis and try to explain the cause of this variability.

Societal impact. Scholarly articles also have a societal impact, such as when they are covered in news media or are discussed in social media outlets; alternative metrics, or altmetrics, can be used as a guide to measure this impact. Article-level information such as social media usage, Mendeley readership, and media attention (Piwowar, 2013) can be tracked by altmetrics providers. As such, when an article generates discussion outside of the academic literature, altmetrics track this usage. Despite limitations such as academics discussing their own research on Twitter, altmetrics provide a general view of the wider societal impact of research articles. Considering the increased pressure on researchers and research institutes to communicate research findings to the public, altmetrics can provide additional insight into which research enjoys public interest. A working group established by NISO is investigating the future role of altmetrics in research communication and assessment (www.niso.org/topics/ll/altmetrics_initiative/).

Open Access articles would be expected to have an altmetrics advantage compared to the non-OA literature; if an article has fewer restrictions to articles for journalists, citizens, businesses, and policy-makers, it seems logical that this would enable the research to be publicly re-used. Furthermore, those parties may be more likely to ‘push’ articles which are publicly accessible into different communication channels. In other words, increased access removes barriers to widespread societal engagement, whereas a relative lack of article access discourages engagement by making it monetarily difficult to access the research.

There is research showing evidence for an altmetrics advantage for Open Access articles, but this does not reflect itself in the most impactful articles. Wang et al. (2015) found evidence that OA

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>DISCIPLINE</th>
<th>CITATION ADVANTAGE</th>
<th>ORIGIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moed (2006)</td>
<td>Condensed Matter Physics</td>
<td>NA</td>
<td>Confirm early access advantage and selection bias but no general OA effect</td>
</tr>
<tr>
<td>Sahu et al. (2005)</td>
<td>Medicine</td>
<td>+300% up to +450%</td>
<td>NA</td>
</tr>
<tr>
<td>Vanclay (2013)</td>
<td>Environmental Science</td>
<td>Not significant</td>
<td>NA</td>
</tr>
<tr>
<td>Wang et al. (2015)</td>
<td>All</td>
<td>+111% up to 152%</td>
<td>NA</td>
</tr>
<tr>
<td>Wohlrabe & Birkmeier (2014)</td>
<td>Economics</td>
<td>+35% up to 64% depending on the database used</td>
<td>NA</td>
</tr>
<tr>
<td>Xu et al. (2011)</td>
<td>Oxford Open Journals</td>
<td>+138.87%</td>
<td>NA</td>
</tr>
</tbody>
</table>
articles receive more attention through social media. The authors compared social media attention (Twitter and Facebook) between OA and non-OA articles at Nature Communications and found that OA articles get 1.2–1.48 times as much social media attention as compared to non-OA articles [see also Adic, 2014]. Nonetheless, of the top 100 articles of 2015 as presented by Altmetric.com, only 42 articles were OA (www.altmetric.com/top100/2015/). This 42% is larger than the overall proportion of OA articles in the literature, which indicates that OA contributes relatively more impact per paper. However, it also indicates that the open impact advantage can be overshadowed by the intrinsic nature of the research published.

Allen et al. (2013) found that a social media announcement of the release of a research article increases the number of users who view or download that article, but does not translate to increases in the citation count in the field of clinical pain research. Costas et al. (2015) found a relatively weak correlation between social media activity and citation counts for the articles in their sample (over 1.5 million article records), while Mohammadi et al. (2015) found that the number Mendeley readers with a status of graduate student or faculty correlated with citation counts. When OA to the articles is factored into an analysis, there is a potential reciprocal relation between citation counts and altmetrics due to OA. Eysenbach (2011) indicated that there is a moderate correlation (0.42–0.72) between the tweets and citations of articles from an OA journal (Journal of Medical Internet Research). Highly tweeted articles were ten times more likely to be highly cited than less-tweeted articles, or vice versa (75% of highly tweeted articles were highly cited; 7% of less-tweeted articles were highly cited). However, it is difficult to assess causality in these cases: do research papers that have more academic impact make their way more frequently into societal discussions, or does increasing online discourse increase their potential citation rates. Overall, this evidence implies that there is a general media advantage with OA (see also McKiernan et al. (2016)), which can be used as a proxy or pathway to indicate greater societal impact.

Altmetrics themselves should not be conflated with citations when it comes to assessing impact, even though some providers such as Altmetric.com provide a single score that can be used to rank an article in a similar way to a journal’s Impact Factor. Each measure of altmetrics tells a different story about the impact of research, and a careful understanding of the altmetrics landscape can lead to a clearer picture of article-level impact.

Text- and data mining

Traditionally, researchers hand over their copyright via a Copyright Transfer Agreement in order to publish a paper. Copyright transfer as the default has far-reaching consequences on the ability of both the authors and others to re-use that research, and many authors are not aware of the impact of these transfers on their ownership of the work. Academics frequently give the copyright to the publishers in exchange for the ‘prestige’ of publishing in one of their venues (e.g., Mueller-Langer & Watt, 2010). Essentially, copyright is a tool wielded by traditional publishers for financial gain rather than fostering creativity, innovation, or protecting authors (Okerson, 1991; Willinsky, 2002). However, in the digital age copying is essential to perform necessary research tasks. These activities range from viewing the article (i.e., downloading requires copying) to re-using figures from an article in a book. The interaction of OA and copyright is complex and deserves multiple papers in itself (e.g., Scheufen (2015)). We will highlight how OA views copyright and relate this to its effects on text- and data-mining (TDM).

The majority of ‘born Open Access’ journals and publishers do not request or receive copyright from authors. Instead, publishers are granted non-exclusive rights to publish, and copyright is retained by authors through a Creative Commons license (typically CC-BY, as befitting the definition of OA from the BOAI). Importantly, this represents a power shift from publisher-owned to author-owned rights to research. This model of author-retained copyright appears to be favoured by the majority (71%) of the research community (Hoorn & van der Graaf, 2006). Shifting copyright to stay with the author allows for wider re-use, including TDM, and forms the basis for a robust and developing public domain.

As such, copyright in OA publications is non-restrictive and also allows machines to freely access it. In traditional publishing, human reading and computer reading are seen as two separate things which require different agreements, whereas OA publishing views them both in the same, non-restrictive manner. In other words, in order to mine OA journals, one only needs the technical skills to do so. In order to mine traditional closed access journals, one needs to sign or negotiate access conditions, even if legitimate access to the articles has already been bought (Bloudoff-Indelicato, 2015).

Automated extraction of information from scholarly research via TDM is a methodology that can be applied to investigate the scholarly literature at an enormous scale, creating new knowledge by combining individual findings. This has already proven to be useful for a large variety of applications (Glenisson et al., 2005). Moreover, OA publishers facilitate TDM on a massive scale by allowing multiple options for collecting the literature needed. For example, PLOS is non-restrictive and allows users to scrape articles directly from the website or using its API. As a result, scraping tools can be used or an application called RPlos, an R package developed to search and download full-text scholarly papers (Chamberlain et al., 2015).

TDM is not only a knowledge-generation tool; it also allows for automated screening for errors and automated literature searches that renew scientific discovery. With TDM it becomes possible to easily compare one’s results with those of the published literature, identify convergence of evidence and enable knowledge discovery (Natarajan et al., 2006) or discover frequent tentative hypotheses that can be used for new research (Malhotra et al., 2013). It has already been used to make major advances in fields such as biomedicine (Gonzalez et al., 2016). TDM also allows for computer applications that can download all scholarly literature given certain search terms (e.g., ContentMine’s ‘getpapers’ tool (github.com/ContentMine/getpapers)), simplifying and shortening the tedious literature search. TDM can also serve a screening purpose similar to plagiarism scanners, helping to detect statistical errors in the scholarly literature (e.g., Nuijten et al. (2015)). TDM can be used in various innovative ways and is an emerging and rapidly
advancing field; non-restrictive licensing through OA promotes its wider application.

Given the exponential increase in the number of scholarly publications, (semi-)automated methods to synthesize results have become increasingly important. TDM decreases the time dedicated to the search for relevant information in scholarly literature by categorizing information (Leitner & Valencia, 2008), highlighting and annotating relevant results to specific users (Shatay et al., 2008), and profiling research (Porter et al., 2002). Furthermore, TDM also prevents researchers and readers from wasting time on reinventing the wheel simply because one can no longer keep up with the published literature (Harmston et al., 2010).

Because of traditional copyright transfers, TDM has often been stymied by traditional, closed access publishers who frequently see it as a copyright infringement. Researchers using software that harvests data from online publications have been (threatened to be) cut off from accessing the articles. These researchers found themselves trapped in negotiations to resume their research — even though their universities had paid subscription fees for access (e.g., Bloudoff-Indelicato, 2015; Van Noorden, 2012). Standard subscriptions do not permit systematic downloads because publishers fear that their content might be stolen and revenue lost (Van Noorden, 2012). In 2014, Elsevier opened its papers for TDM via a proprietary API (Van Noorden, 2014), but places restrictions on the researcher using the API; however, researchers are not legally required to comply with these restrictions in some countries [e.g., U.K., U.S.A., Handke et al., 2015].

Retrospectively making the enormous corpus of closed access papers publicly available might be possible through legal action at an institutional or governmental level. The position of these institutions regarding copyright transfer remains generally unclear. While academics themselves may have little power in debates regarding copyright, institutes could claim ownership of the work they likely already own by invoking their rights under the work made-for-hire doctrine (Denicola, 2006). This is further supported by Shavell (2010) and Eger & Scheufen (2012) who ascertained that transition towards an OA model could not be smooth without first undertaking the necessary legislative steps. In light of the potential copyright problems for closed access articles, TDM will be easier and legally safer for OA journals. As a consequence, TDM is likely to be more readily applied to OA literature when compared to closed access literature.

The economic case for Open Access

The case for publishers

Any publisher has to cover operating costs, which are through (i) article processing; (ii) management and investment; and (iii) other costs. Article processing includes editing, proofreading and typesetting, among other things. Management and investment are the marginal costs to establish and keep the journal running. Other costs include PR, hosting and infrastructural services, conference sponsoring, and other services that are extrinsic to research articles themselves. The average production cost for one paper is estimated to be around $3500–$4000 (Van Noorden, 2013) but are highly variable depending on the publisher. For example, Philip Campbell (Editor-in-Chief of Nature) stated that his journal’s internal costs were at $20,000–$30,000 per paper (Van Noorden, 2013). One possible reason for such variation is that it is unclear whether proposed costs relate to those directly involved in article processing or those required in order for a publisher to ‘break even’ if they receive zero subscription income for an article made OA.

In order to cover those costs and make a profit or surplus, closed access publishers charge for access via subscriptions, whereas many OA publishers or journals charge to publish. Due to increased subscription costs, closed access publishing is becoming an increasingly unsustainable business model (Odlyzko, 2013) with prices estimated to have increased at 250% of that for inflation (www.eff.org/issues/open-access), which will slowly but surely diminish the scope of access to the scholarly literature as fewer organisations are able to pay such high costs. Only recently has any transparency into the detailed costs of subscriptions been gained by using Freedom of Information Requests to bypass non-disclosure agreements between libraries and publishers (Lawson & Meghreblian, 2015), and provide the basis for understanding the economics of scholarly communication. Two potential ways to prevent future retention of an unsustainable model is through decreasing the subscription prices, thereby lowering publishers’ profit margins and the financial burden on subscribers, or switching to new OA-oriented business models and creating new value.

OA publishing is most prevalent in the form of ‘pay-to-publish’, which can be viewed as a fundamental conflict of interest for researchers. However, this payment model has proven itself to function properly when editorial decisions are separated from the business-side of the publisher (i.e., editorial independence), and many publishers (e.g., PLOS, PeerJ, and many learned societies) operate fee waiver schemes for researchers unable to obtain funds for publication fees.

Subscription-based publishers frequently still produce print versions of journals, which increases their costs and is potentially done in order to justify charging for readership, or satisfy an increasingly small demographic who prefer this mode of reading. After all, subscriptions to print journals make sense and, if large-scale printing is still in place, simply transferring this idea to the digital versions creates continuity. Print versions are accompanied by logistical costs to print and ship each issue, but these are partially offset with reprint orders, additional charges for colour figures, and print-based advertising. For some of the largest subscription-oriented publishers the annual net profit on investment reaches up to 40 percent, which makes academic journal publishing highly lucrative for investors (Satyanarayana, 2013), further increases investment to sustain this type of publishing model, and allows maintenance of a system which has been described as an ‘oligopoly’ (Larivière et al., 2015).

Open Access publishers only publish digitally and have opened up avenues for innovation. For example, PeerJ has introduced a wholly different OA business model, where readers pay nothing to access articles, but authors pay a membership fee once to publish for a lifetime. The Open Library of Humanities (OLH) is another innovative business model in which libraries pay a small fee to support OLH and scholars are able to publish for free; this support also enables...
the OLH to help journals ‘flip’ from a subscription model to OA; for example, the recent case of Lingua (https://www.timeshighereducation.com/research-intelligence/open-library-humanities-aims-flip-journals-open-access). Library publishing has also developed in response to the OA movement; in this model, academic libraries begin publishing operations in the interest of providing added value to their patrons and contributing to the growth of knowledge (librarypublishing.org). In terms of innovating in the publishing platform itself, eLife have introduced the Lens as a novel way of viewing research articles online (lens.elifesciences.org/about/), and F1000Research has introduced so-called ‘living figures’ to enable researchers to interact with data underlying research findings [e.g., Colomb & Brembs, 2015]. Such innovations add increased value to the research communication process, contrary to services such as paying to print colour figures, and represent just several cases of a recent explosion in innovation across the publishing ecosystem. One can imagine that publishing costs in OA journals become dependent on the value added on a per-article basis, which can help reshape and improve scholarly communication. As such, making publication costs dependent on the value added aligns the interests of publishers with those of scholars where improving the quality of the process of scholarly communication is the end-goal. The motivation behind this could come from the currently available data that suggests that hybrid publishing options offered by traditional publishers, while being of higher cost, provide a much lower overall quality publishing process (blog.wellcome.ac.uk/2016/03/23/wellcome-trust-and-coaf-openaccess-spend-2014-15/).

The case for non-publishers
The implementation of OA models has implications beyond the publishing industry in terms of economics. Research funding comes from multiple sources, including, national funding agencies and industries, as well as private funders. Much primary research actually takes place outside of academia inside research & development departments. A report from 2004 by Arzberger and colleagues into the scientific, social and economic development of access to research results concluded that access should be promoted to the largest extent possible. According to this report, access to research results can only be responsibly restricted in the case of national security, privacy, or those involving IP rights of the authors (Arzberger et al., 2004). A major principle underlying this is the ownership of research results: publicly funded research and data are public goods and because they have been produced in the public interest they should be considered and maintained as such. Indeed, such a principle has become one of the focal rallying points of the global OA movement. Appropriate licensing and accessibility can influence re-use through commercialization, and can empower citizens and industry to recognize great economic benefits. This apparently resonates with many organisations, as indicated by the increased numbers of OA policies on a global basis (see Figure 3).

With access to scholarly articles, entrepreneurs and small businesses can accelerate innovation and discovery, which is advantageous for advancing the ‘entrepreneurial state’ (Mazzucato, 2011). Access to research results has clear advantages for a range of industries and can help stimulate regional and global economies. Increased access to research results has been associated with considerable increases of return on financial investment (Beagrie & Houghton, 2014). Furthermore, OA facilitates collaborations between publishers and industrial partners to leverage the potential of structured information networks for advanced data mining projects, such as that recently announced between IBM Watson and PLOS (Denker, 2016). One of the major driving forces behind the development of OA in the UK on a national level, the ‘Finch Report’, also concluded that

![Figure 3. Cumulative number of Open Access policies adopted by multiple research organisations, funder and research organisation, sub-unit of research organisation, funder, and research organisation. Figures are given at the beginning of each year. Source: ROARMAP, accessed March 2016.](image-url)
OA was an essential source for information and innovation to the civil service, commercial sectors, small- and medium-sized enterprises (SMEs), and the general public (www.researchinfonet.org/publish/finch/).

Taking cancer research as one high impact case study, there is substantial evidence for the economic benefit of OA. In 2011–12 prices, the total expenditure on research relating to cancer in the period of 1970–2009 was £15 billion (Glover et al., 2014), 5.9 million quality adjusted life years were gained from the prioritized interventions in 1991–2010, of which the net-monetary publishing was an estimated £124 billion (i.e., eight-fold return on investment). However, only 17% of the annual net-monetary was estimated to be attributable to research performed in the UK (Glover et al., 2014), suggesting that 83% of the economic return on cancer research is drawn from research from non-UK sources. As such, opening up research for global access rather than localized and restricted use has the potential to increase the economic return, as demonstrated with the case on cancer research.

The price of Open Access

The question of the current publication cost is difficult and confounded by estimates of the total global publishing costs and revenue. Data provided by Outsell, a consultant in Burlingame, California, suggest that the science-publishing industry generated $9.4 billion in revenue in 2011 and published around 1.8 million English-language articles. This equates to an approximate average revenue per article of $5,000. A white paper produced by the Max Planck Society estimated costs at €3,800–€5,000 per paper through subscription spending, based on a total global spending of €7.6 billion across 1.5–2 million articles per year in total (Schimmer et al., 2014). Other estimates suggest that the total spend on publishing, distribution and access to research is around £25 billion per year, with an additional £34 billion spent on reading those outputs, a sum which equates to around one third of the total annual global spend on research (£175 billion; Research Information Network (2008)).

Such high costs are at odds with estimates of the cost of OA publishing. For example, the Scientific Electronic Library Online (SciELO) is a pan-Latin American bibliographic database, digital library, and co-operative electronic publishing model of Open Access journals. It is estimated that their costs are between $70 and $600 per OA article depending on the services provided (Brembs, 2015). OA now dominates the Latin American publishing landscape, with an estimated 72–85% of articles now with full text OA articles publicly available (www.sparc.arl.org/news/open-access-latin-americaembraced-key-visibility-research-outputs).

Even more extreme estimates of the cost of OA come from Standard Analytics, who suggested the absolute minimum per-article costs of publishing could fall to between $1.36 and $1.61 with sufficient cloud-based infrastructure (Bogich et al., 2016). However, it is likely that this estimate under-emphasizes marginal costs that are beyond a per-article cost basis. What is clear from these analyses is that OA has the opportunity to become a cost-reducing mechanism for scholarly publishing. Open Journals System (OJS), an open source software available to anyone to use and download without charge, is another example of this. Additionally, researcher-led initiatives such as the recently launched Discrete Analysis have costs that average around $30 per article, with no cost to authors or readers, and utilise the infrastructure offered by the arXiv to keep costs low (discreteanalysesjournal.com).

In his article, Sutton (2011) argued that current scholarly journals are digital products and that as such they are driven by very different economic principles and social forces than their print ancestors. Based on Anderson (2013), the author made the case that changes in both the delivery of scientific content and in publishers’ business models was inevitable when journals moved online. Sutton (2011) considered that scientific literature is no different from other digital products with respect to distribution costs and as such it is no exception to the ‘zero is inevitable’ rule of pricing.

The societal case for Open Access

OA to the scholarly literature does not just benefit academics, but also has wider impacts on other domains in society. It makes research available to anyone with an Internet connection who has the ability to search and read the material. Therefore, it transcends academic affiliation and supports sustainable lifelong learning. Examples of groups who might benefit most from OA include citizen scientists, medical patients and their supporting networks, health advocates, NGOs, and those who work in linguistics and translation. In theory, OA affects anyone who uses information and opens up possibilities for knowledge to be used in unexpected, creative and innovative ways beyond mainstream professional research.

Access to knowledge has been called a human rights issue, considering it is included in Article 27 of the United Nations Declaration of Human Rights. Willinsky (2006) has argued that “Access to knowledge is a human right that is closely associated with the ability to defend, as well as to advocate for, other rights”. This is not only true for access to knowledge from research that could save human lives, but also, as argued by Jacques Derrida, to the right of access to philosophy and the humanities disciplines that stem from it. Derrida writes about the field of Philosophy, “No one can forbid access to it. The moment one has the desire or will for it, one has the right to it. The right is inscribed in philosophy itself” (Derrida, 2002).

Society’s ability to make research publicly accessible supports the long-term interest and investment in research. Citizens support research through taxes and therefore one could argue that efforts to support public access should be a fundamental part of the research process. While OA is not a solution to all aspects of research accessibility (e.g., language barriers and disability access remain continuing issues to be addressed), it most certainly increases accessibility greatly and simultaneously allows innovations to remove other barriers (e.g., OA articles can be freely translated to address language barriers and can be changed to different formats to accommodate screen readers). Anecdotal evidence suggests that public access to research is required from a range of public spheres.
(whoneedsaccess.org). Nonetheless, the fact that access to knowledge is actively prohibited in fields like public health should be of major concern to all stakeholders engaged in academic publishing.

In addition to professional research by, for example, academics, there is the dimension of citizen science. In citizen science, the broader public participates in the research process itself. Numerous projects such as Galaxy Zoo, Zooniverse, Old Weather, Fold It, Whale FM, and Bat Detective are all different initiatives in which citizens publicly and openly engage with research. These initiatives introduce new ways of knowledge creation and these groups also require thorough access to actually be able to do non-redundant research. Citizen science forms part of the societal case for Open Access, because it indicates anyone can be engaged with research, not only professional researchers.

Some traditional publishers, and some academics, have argued that public access to research is not required because research papers cannot be understood by non-specialists. However, citizen science initiatives already indicate the general public is interested and understands the research. Whereas this is hyper-variable, and strongly dependent on a range of factors, it is the fact that any public interest in science that is of importance. These publishers and academics argue that specialization is sufficient reason for confining access to professional research bodies through subscriptions. Such statements conflate a lack of desire or need for access with the denial of opportunity to access research. Isolated incidents such as the crashing of servers of Physical Reviews Letters upon the ‘Gravitational Waves’ announcement and OA publication (Feb, 2016; Abbott et al. (2016)) indicate that there are cases of extreme public interest in science that closed access would only impede. Furthermore, claims that only experts can and should read research articles does little to break down the ‘ivory tower’ perception that still pervades academia, and undermines the enormous amounts of resources invested in science communication and public engagement activities. Such perceptions run counter to the idea of access to knowledge as a right, retaining it as a privilege based on financial or academic status.

Open Access in developing countries

The arguments outlined above form the basis for democratic and equal access to research, which come to light even stronger in the developing world. For low- and middle-income countries (LMIC), OA publishing breaks traditional financial barriers and allows unrestricted, equal access to scholarly information to people all over the globe. Due to the high prices of journal subscriptions, developing countries struggle with access just as in developed countries, but to a greater extent and consequently with greater negative repercussions. For example, a research paper from 1982 that indicated Liberia should be included in the Ebola endemic zone was unknown to Liberian officials in the 2014 Ebola outbreak (Knobloch et al., 1982), and paywalled. In general, lack of access can have major deleterious consequences for students and researchers in that they do not have sufficient material to conduct their own primary research or education.

OA provides a mechanism to level the playing field between developed and developing countries by providing equal access. This increases fair competition and increases the scientific potential of the developing world (Chan et al., 2005). This is linked to the wider issue of open licensing, which is essential for effective marketing of medicines and medical research in developing countries (Flynn et al., 2009), and justifies the necessity of Open Access in the wider context of social welfare. Developing countries clearly acknowledge the need for access and as such have launched many repositories to increase access with self-archiving of research articles. In 2014, over 100 institutions in Africa launched a network of over 25 fully-operational OA repositories in Kenya, Tanzania and Uganda (www.ubuntunet.net/april2014#researchrelevant). Such developments suggest that African nations are leaning more towards a ‘green’ model of OA adoption.

The shift from a ‘reader pays’ to an ‘author pays’ model with OA potentially limits its adoption in developing countries. The pay-to-publish system is a potentially greater burden for authors in developed countries, considering that they are not used to paying publication costs, and funding systems for OA are not as well-established as those in the Western world. Publication fees present an even greater relative burden (Matheka et al., 2014) given that they can often exceed a monthly salary. This has been at least partially mitigated with waiver fees for authors from developing countries and additional provisions in research grants. In November 2015, Research4Life (www.research4life.org) and DOAJ announced a working partnership that will help to ensure that the Research4Life users will have access to the largest possible array of OA journals from publishers with a certain quality standard. While Research4Life does not directly cover OA publication costs, a lot of publishers propose full or partial waivers if they are based in countries eligible by Research4Life. However, determining which countries qualify for access to scientific journals through these programs, and which journals they are provided access to, is a fairly closed process. They are also not entirely stable, as publishers can opt out of the initiative, or be selective about which countries they choose to serve. In 2011, publishers withdrew free access to 2500 health and biomedicine journals for Bangladesh (Kmitowitz, 2011) through the HINARI programme. While access was subsequently reinstated, this demonstrates that such initiatives are not an adequate replacement for full OA (Chatterjee et al., 2013). Despite these programs purporting to provide essential articles to researchers in poor nations, they exclude some developing countries (e.g., India) and limit access to researchers who work in registered institutions.

Initiatives such as the Journals Online Project developed by INASP (International Network for the Availability of Scientific Publications; www.inasp.info/en/) has helped to develop a number of online OA platforms in the Global South. These were launched in 1998 with the African Journals Online (AJOL) platform, a project currently managed in South Africa. More recently, INASP have set up Latin American Journals Online (LAMJOL) which hosts journals in El Salvador, Honduras, and Nicaragua. In Asia, Bangladesh Journals Online (BanglaJOL), Nepal Journals Online (NepJOL), and Sri Lankan Journals Online (SLJOL), all facilitated through INASP, continue to develop and now around 95% of their articles are full-text Open Access. As mentioned previously, improved
access should not be limited to professional researchers only, considering that there is also global interest from the broader public, including health professionals.

Predatory publishers

One negative effect on OA comes from entities that attempt to profit by exploiting the pay-to-publish system OA publishers use. These publishers operate a sub-category of OA journals known as vanity presses, predatory publishers (Beall, 2012) or pseudo-journals (McGlynn, 2013). These journals seem to be in the scholarly publishing business primarily to collect publication fees (i.e., APCs) in exchange for rapid publication without formal peer-review. Beall (2015) has defined a list of criteria for identifying predatory journals and an index of publishers and individual journals that meet these criteria is continuously updated (scholarlyoa.com).

While not all scholars and advocates agree with the criteria proposed by Jeffrey Beall, there are several factors that many agree on to identify a predatory publisher. Predatory publishers tend to charge low publication fees (Xia, 2015), most below $100 and few charge more than $200. On the contrary, the average publication fee of journals indexed in the Directory of Open Access Journals (DOAJ) is around $900–$1,000 (Solomon & Björk, 2012) and leading universities in the UK and Germany pay on average $1,200–$1,300 per article (Schimmer et al., 2015). The editorial and peer-review aspects of predatory publishers are either non-existent or suspect; they also falsely claim to have ratings such as a Journal Impact Factor and to be indexed in major databases such as Scopus (Djuric, 2015). Editors from these journals solicit articles that have no relation to the topic of their journal and do not send the documents out to be properly peer-reviewed (Bowman, 2014).

The problem of predatory OA seems to highly affect countries where the academic evaluation strongly favors international publication without further quality checks (Shen & Björk, 2015). Xia et al. (2015) collected and analyzed the publication record, citation count, and geographic location of authors from the various groups of journals. Statistical analyses verify that predatory and non-predatory journals have distinct author populations: authors who publish in predatory journals tend to be inexperienced early-career researchers from developing countries. The spatial distribution of both the predatory publishers and those authors who submit in pseudo-journals is highly skewed: Asia and Africa contributes three quarters of authors (Xia et al., 2015) and Indian journals form the overwhelming proportion of predatory publishers (Xia, 2015). An interesting finding is the very low involvement of South America, both among predatory publishers (0.5 %) and corresponding authors in predatory journals (2.2%). The OA infrastructure in Latin America is different compared to other developing countries, which reveals a possible reason for this asymmetric situation. Latin American journals and universities are engaged in OA publication models at a higher degree than other regions (Alperin et al., 2011). As a result, scholars from this region are not only more aware of OA issues, but they have more options for publishing OA than those from other regions (Alperin et al., 2011). Moreover, SciELO (Packer, 2009) and the creation of Latin American databases (Octavio Alonso-Gamboa & Russell, 2012) have played a tremendous part in this process by bringing recognition and a good reputation to publishing outlets in Latin America.

Considerable attention is given to the subject of predatory publishers, who have become conflated with the OA movement in general to the detriment of genuine OA publishers. For example, a ‘sting’ operation that outed bad peer-review instead got misinterpreted as bad peer-review in OA journals (Bohannon, 2013), but was probably more indicative of issues to do with the traditional closed and over-burdened system of peer review (www.scilogs.com/communication_breakdown/jon-tennant-oa/). Overall, the predatory publisher phenomenon is one major negative aspect that spawns many misconceptions and misgivings about publishing OA. Recently launched industry-led initiatives such as “Think, Check, Submit” (thinkchecksubmit.org) provide a checklist to help researchers identify trustworthy journals, and will likely be a pivotal tool in combating predatory publishers.

Open Access and ‘open research’

OA exists in a constantly evolving scholarly research ecosystem. As such, it is important to note how it is interconnected to other facets of the scholarly communication system. Here, we discuss the implications that the transition to OA has on developments in the broader context of ‘Open Data’ and ‘Open Science’, or ‘Open Research’.

Open Access and the case for Open Data

The overall movement of OA has become conjoined with the push for Open Data. Data sharing is fundamental to scientific progress, because data lead to the knowledge generated in research articles. Furthermore, data sharing has recently become a common requirement, together with OA, for both research funding and publication. The data sharing policy from PLOS illustrates the high degree of overlap between OA and Open Data; authors of articles published in PLOS are required to share the data except if they have valid reasons not to (i.e., an opt-out system; journals.plos.org/plos-one/s/data-availability).

The benefits of Open Data are diverse, including a citation advantage. Combined with the citation advantage for OA articles, providing data alongside publications can increase citations on average by 30% (Piwowar & Vision, 2013) and up to 69% (Piwowar et al., 2007), but this evidence is entirely field-dependent [e.g., Dorch et al., 2015]. Below we cover six additional benefits of Open Data.

First, data sharing enhances reproducibility, a crucial aspect in a time where some scientific domains appear to have problems with reproducibility [e.g., Open Science Collaboration, 2015]. Several factors could form the basis for this ‘crisis’, such as an overemphasis on novelty instead of rigour, selective reporting of results, an overemphasis on statistical significance, and insufficient documentation of the research methods. Publicly sharing data, code, and materials can alleviate issues with reproducibility. This is especially pertinent in the modern sciences, where a substantial proportion of published results draw on quantitative experiments and computer simulations. As such, it is largely impossible to reproduce these experiments as they become more complex and associated datasets increase in complexity. When full access to the data, metadata, and the code...
used to produce the ultimate results are provided alongside publication, this greatly improves reproducibility.

Second, publicly available data can be used to stimulate innovations, such as new analytical methods. An excellent example of this is provided by the neuroimaging OpenfMRI project, where shared data have been used to examine the effects of different processing pipelines on analysis outcomes (Carp, 2012) and test new methods to characterize different cognitive tasks (Turner & Laird, 2012). Another good example is the Protein Data Bank (PDB) (Berman et al., 2000), a project which has enabled the re-use of the primary structural data and opened up new avenues of research, despite the latter not being expected.

Third, data sharing enables new research questions that can only be answered by combining datasets, which now remain separated. Analyzing vast volumes of data can yield novel and surprising findings. This allows for integrated research hypotheses on the underlying processes behind the original data and observations. Exploratory approaches to large datasets can be seen as hypothesis generating tools, which later fuel hypothesis testing to confirm or disprove these hypotheses (Wagenmakers et al., 2012).

Fourth, the realization that data will ultimately be shared and visible to the community provides a strong incentive for researchers to ensure they engage in better data documentation and, therefore, research methods. For example, the willingness to publicly share data has been associated with fewer statistical errors in the final research article (Wicherts et al., 2011).

Fifth, public data sharing provides a digital backup for datasets, protecting valuable scientific resources. Moreover, a considerable amount of data produced every day does not ultimately lead to publication and often remain hidden. Such data might remain in a hidden file-drawer despite being valid, creating a systematic bias in the information available. Public data sharing opens this file-drawer and, consequently, allows independent assessments of whether the data are valid or not.

Finally, and tightly connected with the fifth point, sharing data can certainly reduce the cost of performing research. A file-drawer has been indicated to greatly reduce the efficiency of research in detecting effects (van Assen et al., 2014). Open Data, as such, discourages redundant data collection (i.e., data that have been already collected but never made publicly accessible) and simultaneously allows researchers to better approximate what is happening in their fields. This will have a large effect on research costs, resulting in savings that can be then be used for more productive research goals.

Open Access and Open Science

Beyond OA and Open Data lies a more integrated approach to research, referred to more broadly as Open Science (i.e., Science 2.0, Open Scholarship). According to the European Commission’s Horizon 2020 programme, Open Science is defined as “The transformation, opening up and democratisation of science and research through ICT, with the objectives of making science more efficient, transparent and interdisciplinary, of changing the interaction between science and society, and of enabling broader societal impact and innovation". Consequently, we see OA as only one of the multiple challenges currently facing the ‘open transformation’ of the scholarly publishing system (Watson, 2015), and should be considered in the wider contexts and complimentary domains of research transparency and open source.

As Kriegeskorte et al. (2012) pointed out, OA is now widely accepted as desirable and becoming a reality in many academic spheres. However, the second essential complementary element to research – evaluation – has received less attention despite the large amount of research that has been done to document its current limitations (Benos et al., 2007; Birukou et al., 2011; Ioannidis, 2005; Ioannidis, 2012a; Ioannidis, 2012b; John et al., 2012; Nosek & Bar-Anan, 2012; Simmons et al., 2011). Open evaluation, an ongoing post-publication process of transparent peer review and rating of papers, promises to address the problems of the current assessment systems Kriegeskorte et al. (2012). Future research regarding better ways to improve scholarly communication will be instrumental in providing evidence to support the transformation of the publishing system and design new alternatives (Buttlere, 2014; Ghosh et al., 2012; Kriegeskorte et al., 2012; Pöschl, 2012), which will draw heavily upon on open publishing framework driven by developments and newly emerging models in OA.

Conclusions

This review presents published evidence of the impact of Open Access on the academy, economy and society. Overall, the evidence points to a favorable impact of OA on the scholarly literature through increased dissemination and reuse. OA has the potential to be a sustainable business venture for new and established publishers, and can provide substantial benefits to research- and development-intensive businesses, including health organisations, volunteer sectors, and technology. OA is a global issue, highlighted by inequalities beset at all levels between developing and developed nations, and largely fueled by financial inequality. Current levels of access in the developing world are insufficient and unstable, and only OA has the potential to foster the development of stable research ecosystems. While predatory publishing remains an ongoing issue, particularly in the developing world, increasing public engagement, development of OA policies, and discussion of sustainable and ethical publishing practices can remove this potential threat to OA.

For libraries, universities, governments, and research institutions, one major benefit of lowering the cost of knowledge is a budget that allows them to spend their resources more wisely. For researchers themselves, the goal is to increase their audience and impact by delivering wider and easier access for readers. For publishers, promoting OA is a reaction to the wants and needs of their community. Furthermore, subscription-based publishers have (partly) answered the call of the increasing global demand for OA by giving their green light to author self-archiving (Harnad et al., 2008), as well as through establishing numerous ‘hybrid’ OA options. In an author survey, Swan & Brown (2004) reported that the vast majority of their sample indicated that they would self-archive willingly if their employer (or funding body) required them to do so. Similarly, in a study by Swan & Brown (2005) the vast majority of researchers (81%) indicated that they would comply with mandates that made OA a condition of funding or employment. Fortunately, it seems that funders and research organisations are moving in that
direction. Since 2005, the number policies supporting OA publishing increased steadily. Consequently, it is now the responsibility of researchers to ensure OA to their publications either by choosing the green or the gold road.

The fact that OA impacts upon such a diverse range of stakeholders, often with highly polarised and emotional viewpoints, highlights the ongoing need for evidence-informed discussion and engagement at all levels. As Peter Suber, a leading voice in the OA movement, stated: “As long as they do not have the power to stop Open Access, the toll-access publishers are not the enemy”. Therefore, Open Access supporters should focus their efforts on working for new models and systems rather than trying to undermine or punish the existing ones. OA remains only one of the multiple challenges that the scholarly publishing system is currently facing. As highlighted in this review, the empirical evidence for OA is overwhelmingly positive. Further research needs to move from investigating the effects of OA to researching the broader effects of Open Science.

Author contributions
All authors contributed equally to the writing of this manuscript using the Overleaf collaborative writing platform.

Competing interests
JPT currently blogs for the PLOS Paleo Community, and works for ScienceOpen. CHJH is a Center for Open Science ambassador. DCJ and FW are members of the Open Access Working Group of EURODOC. PM is a Research Data Alliance member. LBC works for the University of Pittsburgh, which has an Open Access library publishing department. All views presented here are strictly personal.

Grant information
This research was partly funded by the Belgian National Fund for Scientific Research through a FRIA grant. PM acknowledges support from the European Commission Horizon 2020 Programme under Grant Agreement 634107 (PHC32-2014) ‘MULTIMOT’.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments
We would like to collectively acknowledge the OpenCon community for inspiring this paper, and for providing continuous discussion about the various aspects of Open Access. In particular, we are grateful to Brett Buttlari, Audrey Risser, Sarah Barkla, and April Clyburne-Sherin for contributing resources to the development of this paper, and Tracey Depellegrin Connelly, Matt Menzenski, and Joseph McArthur for helpful comments on an earlier draft. We also thank Neil Saunders who provided the base code to extract data from PubMed Central. We would also like to thank Andy Nobes for drawing our attention to the work of INASP. PM would like to thank Lennart Martens for insightful discussions on Open Science.

References
Adie E: Attention! a study of open access vs non-open access articles. Figshare. 2014. Publisher Full Text
Antelman K: Do open-access articles have a greater research impact? Coll Res Lbr. 2004; 65(5): 372–382. Publisher Full Text
Beagrie N, Houghton JW: The value and impact of data sharing and curation: A synthesis of three recent studies of UK research data centres. 2014. Reference Source
Published Abstract | Publisher Full Text
Published Abstract | Publisher Full Text | Free Full Text
Reference Source
Buttierre BT: Using science and psychology to improve the dissemination and evaluation of scientific work. Front Comput Neurosci. 2014; 8: 82.
Published Abstract | Publisher Full Text | Free Full Text
Published Abstract | Publisher Full Text | Free Full Text
Reference Source
Chan L, Kirsep B, Ananachalam S: Open access archiving: the fast track to building research capacity in developing countries. 2005.
Reference Source
Published Full Text
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Davis PM: Open access, readership, citations: a randomized controlled trial of scientific journal publishing. PASEB J. 2011; 25(7): 2129–2134.
Published Abstract | Publisher Full Text
Denicola R: Copyright and open access: reconsidering university ownership of faculty research. Nebraska Law Review. 2006; 85(2).
Reference Source
Denker SP: Collaboration with IBM Watson supports the value add of open access. 2016.
Reference Source
Reference Source
Published Abstract | Publisher Full Text
Reference Source
Reference Source
Reference Source
Published Abstract | Publisher Full Text | Free Full Text
Published Abstract | Publisher Full Text | Free Full Text
Published Abstract | Publisher Full Text
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Published Full Text
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Published Abstract | Publisher Full Text | Free Full Text
Hajem C, Hamad S, Gargas Y: Ten-year cross-disciplinary comparison of the growth of open access and how it increases research citation impact. 2006; arXiv preprint cs/0606079.
Reference Source
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Harnad S, Brody T: Comparing the impact of open access (OA) vs. non-OA articles in the same journals. D-Lib Magazine. 2004; 10(6).
Published Full Text
Published Full Text
Reference Source
Reference Source
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Published Abstract | Publisher Full Text
Iannidis JP: Scientific communication is down at the moment, please check again later. Psychol Imp. 2012b; 23(3): 267–270.
Published Full Text
Published Abstract | Publisher Full Text
Published Abstract | Publisher Full Text
Kmetwicz Z: Publishers withdraw 2500 journals from free access scheme in Bangladesh. BMJ. 2011; 342: ISSN 0959-8138.
Reference Source
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Kurtz MJ, Henneken EA: Open access does not increase citations for research

Reference Source

Publisher Full Text

Published Abstract | Publisher Full Text | Free Full Text

Publisher Abstract | Publisher Full Text

Published Abstract | Publisher Full Text | Free Full Text

Reference Source
Lawson S, Meghrabian B: Journal subscription expenditure of UK higher education institutions [version 3; referees: 4 approved]. F1000Res. 2015; 3(274).

Published Abstract | Publisher Full Text

Published Abstract | Publisher Full Text

Published Abstract | Publisher Full Text | Free Full Text

Published Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

Publisher Full Text

Reference Source

Publisher Full Text

Publisher Full Text

Reference Source

Reference Source

Reference Source

Publisher Full Text

Reference Source

Published Abstract | Publisher Full Text | Free Full Text

Nuyts M, Oppenheimer F: Open access citation rates and developing countries. In ELPUB. 2008; 335–342.

Reference Source

Publisher Full Text

ISSN 1554-351X, 1554-3528.

Published Abstract | Publisher Full Text

Publisher Full Text

Publisher Full Text

Ohtsuki AM: Open access, library and publisher competition, and the evolution of general commerce. CurR. 2013.

Reference Source

Publisher Full Text

PubMed Abstract | Publisher Full Text

Reference Source

Published Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Reference Source

Publisher Full Text

Sahu DK, Gogtay NJ, Badvekar SB: Effect of open access on citation rates for a small biomedical journal. 2005.

Reference Source

PubMed Abstract | Publisher Full Text

Schimmack R, Gescheun KK, Vogler A: Disrupting the subscription journals’ business model for the necessary large-scale transformation to open access. 2014.

Reference Source

Schimmack R, Gescheun KK, Vogler A: Disrupting the subscription journals’ business model for the necessary large-scale transformation to open access. 2015.

Publisher Full Text

Reference Source

PubMed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

Published Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

Reference Source

Swan A: The open access citation advantage: Studies and results to date. 2010.

Reference Source

Reference Source

Reference Source

PubMed Abstract | Publisher Full Text | Free Full Text

Reference Source

van Assen MA, van Aert RC, Nuijten MB, et al.: Why publishing everything is
more effective than selective publishing of statistically significant results.

Watson M: When will 'open science' become simply 'science'? Genome Biol. 2015; 16(1): 101. ISSN 1465-6906.

Wicherts JM, Bakker M, Molenaar D: Willingness to share research data is related to the strength of the evidence and the quality of reporting of statistical results.
Tennant et al offer a timely and insightful review of the various effects of open access publishing on science and society. The paper is well structured and enjoyable to read. Although I am not an expert on open access publishing, I also found the discussion of the literature quite balanced and evidence-based.

I have just three recommendations for revisions:

1. In the discussion of the OA citation advantage (which is excellent), the authors are very careful to avoid asserting a causal link between the OA status of a paper and the number of citations it generates. However, in my view, the conclusion of the Gargouri (2010) paper should be caveated. While the results of Gargouri are consistent with the absence of a self-selection bias in producing the OA advantage, they cannot rule it out. It might be the case that funders or institutions that mandate OA are also those that are more likely to support/host higher impact research. Furthermore, given that OA mandates are never 100% effective, perhaps authors are more likely to comply with a mandate for work they perceive to be of high impact. A useful addition to this section would be to specify the conditions under which we could determine whether or not OA causally influences citations. This would require a randomised controlled trial in which articles are randomly assigned to OA and non-OA routes. To my knowledge, no such a trial has yet been undertaken, although the authors will be in a more informed position to know whether this is the case.

2. There is not much discussion in the paper of the distinction between full OA and hybrid OA. Given that the APCs for hybrid OA articles tend to be substantially higher than those for full OA articles, this may warrant more prominent coverage in the economic case for OA. It is also relevant to the brief mention of the Finch Report, which (controversially) favours gold OA (including the hybrid route) over green OA.

3. I was glad to see the link formed between OA and open science more generally, as many researchers and advocates draw a distinct (and somewhat arbitrary) line between these initiatives. In this context, it would perhaps be relevant to mention the TOP guidelines (https://cos.io/top/). TOP is very much an evolving entity so it would be interesting to consider the inclusion of an OA standard in future revisions of TOP.

Minor

p13 This sentence is difficult to parse: "Whereas this is hyper-variable, and strongly dependent on a range of factors, it is the fact that any public interest in science that is of importance."
Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Anne Tierney
Department of Learning and Teaching Enhancement, Edinburgh Napier University, Edinburgh, UK

This paper is a comprehensive review of the complexities of OA. I have come late to the discussion on this paper, and I find that the previous reviewers have been meticulous in their critique of the paper, to the point I have very little to add. However, there are a couple of points for consideration. What is the effect (if any) of the UK Research Excellence Framework on Open Access? To what extent is disciplinarity a factor in Open Access? I ask this question because of the high impact of the sciences and biomedical research, but wonder about Arts and Humanities (and other areas) as a comparison. As one of the other reviewers said, “this doesn't consider the fact that the prestige of some journals is advertising in and of itself.” While this is true of scientific journals, the same can't be said, for example, of education journals, so there is a lack of parity between disciplines. There was also an assumption of the willingness of reviewers to continue to offer their services freely. This aspect of OA (and subscription-based) publishing is hardly ever critiqued, but it assumed to be part of the process.

All in all, this paper gives a lot of food for thought. I don't expect a rewrite of the paper, based on my comments, but I would welcome further discussion on where the authors (and readers) see OA going in the future.

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Paige Brown Jarreau
Manship School of Mass Communication, Louisiana State University, Baton Rouge, LA, USA

This is an interesting and timely review of the issue of open access to scientific literature.

The two other reviewers have highlighted specific issues that should be addressed in the revision of this article, and I agree with these issues. I've added other notes below. I think this review article would benefit from a re-write to correct potentially biased language in support of open access and to round out the review with further evidence of open access impacts on citation rates, altmetrics, scientific literacy / public engagement and research quality.
Notes:

The authors cite “fostering a culture of greater scientific literacy” as a benefit of open access. While this is theoretically a benefit, has more or less open access in particular scientific fields been tied to greater or lesser scientific literacy in those areas? Is this potential benefit supported by research literature? The authors should be clear on what the evidence-based benefits of open access are, and also what the potential drawbacks are. References to related research should be provided on this topic.

The structure the authors use for laying out their evidence and the language they use (e.g. “[the] case for Open Access”) appear to lean more toward the positive impacts / benefits of open access from the outset. The authors should be very careful to review the evidence first before making value-based statements or arguments about open access, even if the evidence-based benefits outweigh any potential drawbacks, or lack of significant benefits, in the end.

Correct the typo in the following sentence: “[In] A longitudinal study Eysenbach (2006) compared…”

The authors write: “One alternative explanation for the citation advantage could be that researchers choose to publish OA when a finding is more impactful, but empirical evidence contradicts this selection effect. Gargouri et al. (2010) compared citation counts within a cohort of OA articles that had either been self-selected as OA or mandated as OA (e.g., by funders). The study concluded that both were cited significantly more than non-OA articles. As such, these findings rule out a selection bias from authors as the cause for the citation advantage (Gargouri et al., 2010).” However, couldn’t funded research also have a tendency to be considered “more impactful,” because it was chosen in the first place to be funded and mandated as OA? The authors should discuss this, and whether there is any research that experimentally investigates whether open access provides a citation advantage. This could perhaps be suggested as future research. The authors should also discuss how/why some studies have found no citation advantage for OA papers.

Related to social media mentions of research papers and citation counts, the authors might also consider citing Liang, X., Su, L. Y. F., Yeo, S. K., Scheufele, D. A., Brossard, D., Xenos, M., … & Corley, E. A. (2014). Building Buzz (Scientists) Communicating Science in New Media Environments. Journalism & Mass Communication Quarterly, 1077699014550092. [PDF]

In discussing the economics of OA, the authors should also discuss any evidence of potential drawbacks for various stakeholders, such as where funds for pay-to-publish fees will come from and how these fees may affect individual researchers. Pay-to-publish models of OA may also burden early career researchers and researchers working in fields where research grants are more difficult to obtain.

The authors do not discuss the potential impact of OA on research quality or reproducibility (reproducibility is only mentioned in the context of open data). As this has been a controversial issue in the past (e.g. the mentioned 'sting' operations) the authors should discuss any research that has investigated the impact of open access on the rigor of peer reviews, research quality, presence of replication studies / reproducibility, etc. There has also been some discussion of whether open peer review (like that used by F1000Research) affects the quality of reviews, e.g. (Rooyen et al. 1999). The authors should mention this and/or subsequent literature when addressing open peer review.

There have also been studies on scientists’ / journal article authors’ perceptions and attitudes toward open access, e.g. Schroter and Tite (2005; 2006). The authors might considering summarizing some of
this research, as it gives context to some of the existing barriers to open access and perceived drawbacks among researchers.

Summary:

In summary, the topic of this review is important and timely. However, this paper falls short of what I would expect from a systematic review in terms of systematically summarizing previous research findings related to the impact of open access on scientific publishing, public engagement with science, science literacy and altrmetrics. The authors should be careful to hold back value judgements / arguments related to the case for open access until having systemically reviewed the evidence-based benefits, drawbacks, and/or lack of significant benefits. The authors should also provide some discussion of how we might objectively weigh any evidence-based benefits with potential drawbacks for various stakeholders including researchers and especially early career researchers. The authors should avoid summarizing mostly the findings of previous studies that find positive impacts of open access on the various domains of potential impact they consider in their paper. The evidence already presented in the paper is rigorous and detailed. However, I would recommend a revision that rounds this review out with more systematic evidence.

References

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Referee Report 18 April 2016

https://doi.org/10.5256/f1000research.9110.r13430

Peter Suber
Berkman Center for Internet & Society, Harvard University, Cambridge, MA, USA

The article is very well-done, unusually thorough and detailed. Here are a few ways to improve it.

When I refer to page numbers, I mean the page numbers in the PDF of v1, April 11, 2016.

http://f1000research.com/articles/5-632/v1

"You" refers to the authors.
Apologies in advance if I sometimes cite my own work in these comments.

p. 1. In the abstract you say, "The economic case for Open Access is less well-understood, although it is clear that access to the research literature is key for innovative enterprises, and a range of governmental and non-governmental services."

This understates the economic case. For example, some subscription journals convert to OA precisely for economic benefits.

See the preliminary version of David Solomon, Bo-Christer Björk, and Mikael Laakso, "Converting Scholarly Journals to Open Access: A Review of Approaches and Experiences" now open for public comment. (The final version will be published this summer.)
https://osc.hul.harvard.edu/programs/journal-flipping/public-consultation/

See especially section 4.6, "Increased revenue and financial viability."

p. 3. You say, "The Green route refers to author self-archiving, in which a version of the peer-reviewed article is posted online to a repository or website."

Green OA also applies to preprints, which are not peer-reviewed.

p. 3. You say, "This [green] route is dependent on journal or publisher policies on self-archiving (sherpa.ac.uk/romeo)."

This is importantly incomplete. It overlooks rights retention. Some individual authors retain enough rights to authorize green OA on their own. While this may be fairly rare, rights-retention OA policies at universities are increasingly common. More than 80 institutions in North America, Europe, Africa, and Asia have now adopted rights-retention OA policies. Under these policies, the faculty grant non-exclusive rights to their institution before they sign future publishing contracts. The institution then has permission to make those future articles OA without having to seek permission from publishers. (The institutions also grant the same non-exclusive rights back to authors.)

For more detail on rights-retention OA policies, see Stuart Shieber and Peter Suber, "Good Practices for University OA Policies."

p. 3. You say, "A subscription to all peer-reviewed journals is not affordable for any single individual, research institute or university (Odlyzko, 2006)."

This is true and important, but it's a pity you don't cite more recent evidence than 2006.

An important kind of evidence for this proposition is that not even Harvard University can afford all the journals needed by its faculty and students, and must cancel journals every year for budgetary reasons alone. I've collected seven public statements from Harvard to this effect (2008-2012) in the supplements to p. 30 of my 2012 book (Open Access, MIT Press, 2012).
p. 3. You say, "Much of the driving force behind this global change has been through a combination of direct, grassroots advocacy initiatives in conjunction with policy changes from funders and governments."

Please add "university policies" to this list. They're on a par with funder policies in importance, and they're far more numerous. ROARMAP shows that 7+ times more universities have OA policies than funders.

p. 3. You say, "The Open Access movement is intrinsically tied to the development of the Internet and how it redefined communication and publishing (Laakso et al., 2011)."

For more documentation on how the OA movement arose as soon as the internet arose, see my Timeline of the Open Access Movement.
http://legacy.earlham.edu/~peters/fos/timeline.htm

In 2009, I moved the timeline to the Open Access Directory wiki, and you should probably cite that version:

Timeline of the open access movement...
http://oad.simmons.edu/oadwiki/Timeline

...especially subsection on developments before 2000.
http://oad.simmons.edu/oadwiki/Timeline_before_2000

(You might cite this timeline again on p. 5, when you introduce your own timeline.)

p. 3. You say, "One result of the growing OA movement is the rise of OA-only publishers...."

Somewhere in this paragraph, I'd mention that some OA publishers are for-profit (e.g. BMC) and some are non-profit (e.g. PLoS).

p. 4. Your section on the impact advantage is very well-done. Most treatments are much briefer, less careful, and less detailed than yours.

I have just these suggestions. You cite authors of individual studies, and Alma Swan's 2010 literature review. But you don't cite the mother lode of literature on this topic: Steve Hitchcock's annotated bibliography, "The effect of open access and downloads ('hits') on citation impact: a bibliography of studies."
http://eprints.soton.ac.uk/354006/1/oacitation-biblio-snapshot0613.html

Or more precisely, you cite it once, 10 paragraphs before the section on the impact advantage begins. You should cite it again within the section on the impact advantage. You should mention that it's comprehensive and annotated.

Hitchcock stopped updating it in 2013. But you should mention that SPARC Europe has committed to update it through its Open Access Citation Advantage Service.
http://sparceurope.org/oaca/

Finally, in the same place where you cite Swan's literature review, you should cite Ben Wagner's literature review, "Open Access Citation Advantage: An Annotated Bibliography," Issues in Science and Technology Librarianship, Winter 2010.
http://www.istl.org/10-winter/article2.html

p. 5. In the timeline entry for 2002, the BOAI was released on February 14, not January 14.

p. 6. In the timeline entry for 2013, I'd say that the suicide of Aaron Swartz "increases" (not "gains") international attention for the OA movement, or "draws new attention" to the OA movement. The current language suggests that the OA movement didn't have international attention before that, which is very far from the truth.

p. 9. You say, "Shifting copyright to stay with the author allows for wider re-use, including TDM, and forms the basis for a robust and developing public domain."

You shouldn't use "public domain" here. In copyright law, the term has a specific meaning which you don't mean here.

p. 10. You say, "Only recently has any transparency into the detailed costs of subscriptions been gained by using Freedom of Information Requests to bypass non-disclosure agreements between libraries and publishers (Lawson & Megrebian, 2015)."

Here you overlook the earlier Big Deal Contract Project in the US, from Ted Bergstrom, Paul Courant, and Preston McAfee. It too used public records laws and Freedom of Information requests. I’m not sure when it launched, but it was before 2009. http://www.econ.ucsb.edu/~tedb/Journals/BundleContracts.html

p. 10. You say, "The average production cost for one paper is estimated to be around $3500–$4000 (Van Noorden, 2013)."

I’ve seen dozens of widely varying estimates of this cost, most of them much lower than Van Noorden’s. Unfortunately I don’t have time to hunt them down. I hope you can introduce at least a few more, if only to show that estimates differ widely here.

p. 10. You say, "Philip Campbell (Editor-in-Chief of Nature) stated that his journal’s internal costs were at $20,000–$30,000 per paper...."

To clarify, I think he meant that this was the cost per published paper. If Nature rejects x articles for every one it publishes, then this includes the cost of peer reviewing x rejected articles. Since Nature is very selective, x is high. But this "cost per published paper" should not be compared to costs for peer-reviewing a single paper or the production costs of publishing an accepted paper.

p. 10. You say, "OA publishing is most prevalent in the form of ‘pay-to-publish’...."

This is either false or misleading. About 70% of peer-reviewed OA journals charge no APCs at all. In that sense, the fee-based model is not the most prevalent. It’s a minority model. On the other hand, about 50% of the articles published in peer-reviewed OA journals are published in the fee-based variety.

On my claim that most OA journals charge no APCs:

And my article, "No-fee open-access journals," SPARC Open Access Newsletter, November 2, 2006.
https://dash.harvard.edu/handle/1/4552050

The DOAJ used to make it easy to see what percentage of listed journals were fee-based and what percentage were no-fee. But it has temporarily made that difficult by combining the categories of "no-fee journals" and "journals for which we don't have enough information to say."

On my claim that about half the articles published in peer-reviewed OA journals are published in the fee-based variety, see the updates to p. 170 of my 2012 book. There I cite three studies and quote the relevant excerpts.

p. 10. When you describe ways in which fee-based OA journals mitigate some problems arising from the model, you mention the firewall between the editorial and business side of the journal (good), and you mention fee waivers (good).

You should also mention fee discounts, which many journals give in lieu of fee waivers.

You should also mention that most fees charged by fee-based journals are paid by funders (59%), or the author's employer (24%), and only 12% are paid by authors themselves. These numbers are from Suenje Dallmeier-Tiessen et al., "Highlights from the SOAP project survey. What Scientists Think about Open Access Publishing," arXiv, January 29, 2011, Table 4.
http://arxiv.org/abs/1101.5260

p. 12. You say, "In his article Sutton (2011)..."

please change "his" to "her". The article is by Caroline Sutton.

p. 12. You say, "While OA is not a solution to all aspects of research accessibility (e.g., language barriers and disability access remain continuing issues to be addressed)."

p. 13. You refer to "the fact that access to knowledge is actively prohibited in fields like public health."

I don't know what you mean here by "actively prohibited".

p. 13. You say, "Some traditional publishers, and some academics, have argued that public access to research is not required because research papers cannot be understood by non-specialists."

Here you might want to cite Section 5.5.1 ("OA for Lay Readers," pp. 115-119) of my 2012 book.

p. 13. You say, "The shift from a ‘reader pays’ to an ‘author pays’ mode...."

I recommend avoiding the term "author pays" for the reasons I gave in my fourth comment to p. 10 above. Most OA journals don't charge author-side fees, and among those who do, most fees are not paid by
authors.

p. 13. You say, "This has been at least partially mitigated with waiver fees for authors from developing countries and additional provisions in research grants...."

Yes. But again, don't forget that the majority of peer-reviewed journals are no-fee journals. See my fourth comment to p. 10 above.

pp. 15-15. You say, "Fortunately, it seems that funders and research organisations are moving in that direction. Since 2005, the number policies supporting OA publishing increased steadily. Consequently, it is now the responsibility of researchers to ensure OA to their publications either by choosing the green or the gold road."

Since you're recapitulating some grounds for optimism here, I'd also reiterate the growth of rights-retention OA policies. See my second comment on p. 3 above.

p. 16. You say, "As Peter Suber, a leading voice in the OA movement, stated: 'As long as they do not have the power to stop Open Access, the toll-access publishers are not the enemy."

Thanks for quoting me. I wanted to give you the source to cite. Unfortunately, I don't think you're using an exact quote. Here's the closest one I can find:

"TA [toll-access] publishers are not the enemy. They are only unpersuaded. Even when they are opposed, and not merely unpersuaded, they are only enemies if they have the power to stop OA. No publisher has this power, or at least not by virtue of publishing under a TA business model. If we have enemies, they are those who can obstruct progress to OA. The only people who fit this description are friends of OA who are distracted from providing OA by other work or other priorities."

https://dash.harvard.edu/handle/1/4391169

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 10 May 2016

Jon Tennant, Imperial College London, UK

Hi Alexander,

I've been looking into this, and the most up-to-date statistics for this based on the DOAJ come from this source: http://citesandinsights.info/civ16i4.pdf. Figures here seem to suggest that 71% of journals in the DOAJ do not levy an APC. This is likely to change slightly with the updated 'crackdown' from the DOAJ (http://www.nature.com/news/open-access-index-delists-thousands-of-journals-1.19871), but I'll add a reference to this in.

Jon
Referee Response 24 May 2016
Peter Suber, Harvard University, USA

Here are the latest stats from the DOAJ (May 24, 2016).
https://goo.gl/LejTAw

Competing Interests: No competing interests were disclosed.

Author Response 25 May 2016
Jon Tennant, Imperial College London, UK

Dear Alexander,

I'm just posting the link that Peter was kind enough to send us yesterday, with updated statistics on this matter: https://plus.google.com/+PeterSuber/posts/HjrRDcrZS8p

Important points:

Here are the numbers as of May 24, 2016:

Total number of journals listed in DOAJ = 8,858
Yes (fee-based) = 1,424 = 16%
No (no-fee) = 2,601 = 29%
No info = 4,833 = 55%

Further references and information are provided in that post, and will be integrated into the next version of this manuscript.

Best,

Jon

Competing Interests: No competing interests were disclosed.
also included a section for other readers of this paper. This may sound a bit like an Amazon or Airbnb review or something.

Short summary for readers

This is an excellent paper about the academic, economic, and societal benefits and impacts of Open Access. It's a good introductory text for people who don't know much about OA and would like to know more. It's also a good persuasive text for stakeholders in policy, universities, publishing, funding, etc. positions who may be interested in including OA in their decision making.

In addition to its attention to detail, its main strengths are its focus, its brevity, and its relative impartiality.

One of the difficulties with writing about OA is that there are so many overlapping issues; this paper is very good at giving a brief overview or description of the other issues, pointing the reader in the direction of somewhere with more information, and then getting back onto the topic.

Another thing about OA is that its advocates are very passionate about it. As with any cause, that's a good thing for its supporters, but overwhelmingly pro-OA resources can seem potentially off-putting to neutrals. This paper does an excellent job of presenting an evidence-based pro-OA viewpoint in a measured tone and without coming across as ideological.

One possible caveat is that the paper presents extensive evidence of what OA does, but it doesn't tackle the meatier issue of how to implement it successfully. However, I feel that's a separate issue which is beyond the scope and purpose of this paper.

Suggestions and comments for authors

First of all, great article! Well done and thank you for pulling together what is a disparate collection of links and literature into a one-stop shop which is both useful and coherent. I like this article a lot... but my role here is to criticise and make it better, so the rest of this review will focus on that.

This article is well-written and well-structured. That's made it much easier as a reviewer to simply go through the article and highlight my issues with it paragraph by paragraph, rather than having to make it coherent first and then sort out the smaller things.

The vast majority of the issues I have with this paper are minor ones, so it didn't make sense to have separate major/minor sections; rather, I'll just go through them in order in the text.

(I printed this out to underline/comment on, so for me, tables 1 and 2 came during the academic case for OA section. Online, they're supplementary materials, and I think it's best that way, but this is why I'm commenting on the tables during that section)

Abstract

"We recommend that OA supporters focus their efforts on working to establish viable new models and systems of scholarly communication, rather than trying to undermine the existing ones..."

In general, I agree with this sentiment. However, I feel that its inclusion in the abstract is a bit jarring as the text of the article doesn't really cover recommendations to OA supporters at all, other than in the very last paragraph. I think that's good, as I feel this paper is best suited as relatively neutral source of information
rather than a preaching to the converted or ideology discussion kind of purpose. So, I think this part can be left out of the abstract; it doesn't refer to any particular “recommendations to OA supporters” bit in the text and potentially clouds the strength of the relative impartiality of the paper.

A brief history of OA

"BioMed Central and ... PLOS were founded in the early 2000s and remain successful businesses to date." (p3, col2)

Technically, PLOS is a non-profit. I suggest changing successful businesses to successful business models. This both highlights the financial sustainability of OA (increased APCs at PLOS notwithstanding) and also sets it apart from traditional publishers, which are definitely successful businesses.

The academic case for OA

figure 1 (p4, top)
I have difficulty interpreting the y-axis on figure 1. It's labelled as cumulative number of PubMed articles relative to 2000, but I'm not sure how to read it. Reading off 2014, non-OA is c.22 on the y-axis, and OA is c.33 on the y-axis. Based on the figure 1 caption about the ratio, I'm interpreting this as meaning that, in 2014, the ratio of cumulative PubMed articles was approx 33:22 OA to non-OA, or in other words, 60% of PubMed articles in 2000-2014 were OA. However, I'm not sure if this is how it's meant to be interpreted. I think that it's well visualised, and really makes it clear how OA has taken off, but exactly what the numbers represent on the y-axis is unclear to me: number of articles? number of times more articles? It could use some relabelling.

"Napster moment" (p4, col1)
I like the comparison, but it could use a citation (even just the Napster wikipedia article) and/or a little more explanation to clarify what that means.

Table 1:
"1991 ... by the American physician Paul Ginsparg"
He's a physicist, not a physician.

Table 2:
Xu et al (2011)
I don't think this reference was very well cited. Firstly, Oxford Open Journals are listed as a discipline, when they're the source of papers across disciplines. The actual disciplines were Medicine, Social Sciences, Mathematics & Physical Sciences, Life Sciences, and Humanities. Secondly, you list the citation advantage as 138.87%. However, one of the main findings of this paper was the disparity in citation advantages; it ranged from 163.16% for OA articles in Mathematics & Physical Sciences to an actual citation disadvantage of -49.24% for OA articles in Humanities. Given the pro-OA nature of the paper, I feel like you have an extra responsibility to report the few anti-OA pieces of evidence.

Gargouri et al (2010) (page 8, col1)
This paragraph is about a possible confound for the OA citation advantage, where it could be that researchers choose to publish OA for extra cool findings, and you use the Gargouri et al. study to counter this... which is totally correct. You write:
"Gargouri et al. (2010) compared citation counts [for articles which were] self-selected as OA or mandated as OA. The study concluded that both were cited significantly more than non-OA articles. As such, these findings rule out a selection bias"
This is true that both OA types were cited more than non-OA. However, it's also missing the crucial point that there was no difference in citation between self-selected OA articles and mandatory OA articles. Including this would strengthen your point to show that it's OA itself which leads to the citation advantage.

The whole section about altmetrics (subhead societal impact of the academic case for OA, p8, col2) could use some attention. It's not clear until much later what the difference is between alternative metrics (i.e. altmetrics), i.e. the various types of metrics which are alternative to journal impact factors, and Altmetric, i.e. the company which is often confusingly referred to as Altmetrics (not in this paper, to be fair, but elsewhere). A quick disambiguating sentence or two would be really useful here.

In the following paragraph (page 8, col2), you write about OA altmetrics advantage, and say that there's a logical assumption that OA articles should have one. However, this doesn't consider the fact that the prestige of some journals is advertising in and of itself. You can, and do, get a lot of closed-access papers which generate high altmetrics (social media attention, Mendeley readership) from academics who do have access. And sure enough, in the next paragraph, (page 8 and 9), the Wang et al. 2015 article finds that the OA altmetric advantage doesn't extend to the most impactful articles. I think this section can be made more nuanced and informative by quickly discussing the role of journal prestige. Nothing in depth, just as something that exists and needs to change (for example, you could point people to Brembs et al. and the Deep Impact paper in Frontiers).

"Essentially, copyright is a tool wielded by traditional publishers for financial gain rather than fostering creativity..."
I don't disagree with this. However, I feel it comes on too strong. I think it's fair to say that most people's immediate opinion of copyright is "well, I'd like my stuff to be copyrighted, as that means people can't steal it and pass it off as their own". I think that you need a little more detail here, even just two or three sentences to explain how and why copyright is used for financial gain rather than author protection. Otherwise, it just sounds political/ideological, and counterintuitive for people who haven't read much about copyright.

Glenisson et al. (2005) citation (page 9, col2).
You write that TDM has "proven to be useful for a large variety of applications", and use the Glenisson citation to back this up. I have to say here that I know very little about TDM; however, following through to the Glenisson paper, I don't see how it supports that conclusion. I read it and it seems to show a proof-of-concept kind of study: that TDM can group a set of papers into themes in the same way that an expert can. This is really cool and everything, but I don't think that that substantiates your point that TDM is useful for a large variety of applications. Rather, I'd like to see a couple of specific examples, which you then describe more fully in the next paragraph. One good one is Swanson 1987 (I think - taken from here: http://people.ischool.berkeley.edu/~hearst/papers/acl99/acl99-tdm.html), who used TDM to make the link between migraines and magnesium deficiency.

"...simply because one can no longer keep up with the published literature".
Small point, but I think it's worth stressing that this is due to the amount of literature that there is.

The economic case for OA

the pay-to-publish part (p10, col2)
I feel this glosses over problems with pay-to-publish. You come back to predatory OA later, but this isn't quite the same: I think it could use a couple of extra sentences describing what the conflict of interest for researchers is, and also stress that pay-to-publish makes it potentially in a journal's interest to accept
more papers than they necessarily should. One of the most common anti-OA arguments I see in non-scientific media is that OA is pay-to-publish, which is often misrepresented as "pay-to-publish is publication bribery". I think this section needs a little more substance to it to acknowledge/address this.

"making publication costs dependent on the value added..." (page 11, col1)
When talking about the value added by journals, this paragraph ignores the elephant in the room: journal prestige. Again, I know that this isn't the purpose of this article, but I think it could really be strengthened by mentioning it before moving on.

"Much primary research actually takes place outside academia inside research and development departments" (page 11, col2)
The part following this sentence is muddy. First, you talk about R&D outside academia (i.e. presumably private research), and then you talk about access to research results because they're publicly financed public goods. So, what does that mean, that R&D from private businesses who've invested their own capital in it should be made available to all? (maybe I agree with that, in some cases, but a lot of people sure won't)
I think this paragraph could be honed a bit; otherwise, it's straying into the ideological territory of saying that all private research should be made public for the public good. That transcends OA in scholarly publishing, and makes OA in scholarly publishing too easy to dismiss.

The cancer research paragraph (page 12, col1) is also unclear. It took me a while to figure out it's talking about UK expenditure - my first assumption of "total expenditure" meant worldwide. It's also not totally clear what the point is - the geographical origin of research is unrelated to its open status. I think that it's quite a leap to write (apologies for paraphrasing) "83% of UK economic benefit from cancer research comes from research outside UK, therefore open access is good", because I think it conflates two different things.

Also, small point, "17% of the annual net-monetary was estimated" is missing the word benefit after net-monetary.

The societal case for OA

Small point: as somebody who wears a linguistics hat quite often, it rankles to read on page 11 "Examples of [non-academic] groups who might benefit include... those who work in linguistics and translation". Translation, for sure, but linguistics is an academic field - you even mention the Lingua to Glossa movement organised by academic linguists later in the manuscript! To me, this is like writing "...those who work in biology and vets", lumping the academic field and a practical use of that field together. Just referring to translation is fine.

Citizen engagement (page 13, col 1)
I agree that these are great examples of citizen engagement with science, but at the risk of sounding like an Elsevier representative, interest in projects like Galaxy Zoo does not entail desire to download and read papers. In fact, you could even make the (spurious) argument that those projects come into existence precisely because citizens aren't interested in downloading and reading papers. I don't actually agree with that, I agree with your general point... but I think that citizen science project interest and citizen science paper interest. Obviously I think it is in the public interest to have science journals OA, but this isn't the right argument (and I think the sentence "Such statements conflate a lack of desire or need for access with the denial of opportunity to access research" is perfect). I think a stronger argument would be to look at existing OA journals, such as PLOS and Frontiers, and see how many views and downloads
come from people who aren't academics. If you can point to, say, some of the most viewed/downloaded PLOS papers and say "look, 30% (or whatever, that's a random number) of these readers aren't academics, they're real people who are interested in it", that would make for a stronger argument.

Quibble about the "yes, we were warned about Ebola" example: the finding from that paper (that Liberians have Ebola antibodies in their blood, suggesting the endemic presence of Ebola) is actually written on the first page preview of the paper (http://www.sciencedirect.com/science/article/pii/S0769261782800282/part/first-page-pdf, accessed from my laptop outside my institution). It could be argued that anybody could see this finding anywhere in the world, meaning that it's not a problem of OA, it's a problem about searching and indexing. A good counterargument to that is obviously that this paper would have been unsearchable with TDM at the start of the outbreak when people were combing through all West African Ebola literature.

"'green' model of OA adoption" (page 13, col2)
You generally refer to Green and Gold routes, with the colours capitalised. Just a small terminology thing to keep consistent.

A much more important thing is also on page 13, col2:
"The pay-to-publish system is a potentially greater burden for authors in developed countries, considering that they are not used to paying publication costs, and funding systems for OA are not as well-established as those in the Western world."
--> developing countries, not developed countries!

Predatory publishers (page 14, col1)
I agree with Ross Mounce's comment on the paper: you give Beall too much importance. I think it can be a useful list and should be mentioned, but definitely include some caveats like the ones Ross writes, or the fact that he added Frontiers to the list because of a couple of editorial mistakes.

Conclusions

Peter Suber (page 16, col1)
You describe him as "a leading voice in the OA movement", but I think you should write what his positions are (see http://cyber.law.harvard.edu/~psuber/wiki/Peter_Suber) in order to justify his importance.

Other general things

There are no proposed solutions in this paper, which is totally fine, because it's beyond the scope of the paper. I feel it could benefit by putting in a couple of sentences here and there about who is needed for driving this change: academics, funders, governments, etc.

I was disappointed not to see anything about the Dutch government and university library organisations' collective drive towards OA. They've changed the national law on copyright, they've reached agreements with most major publishing groups, they may well introduce mandatory OA publishing in the Netherlands in 2016, and they've made it one of the main priorities of their EU presidency this year. It's like the best example of how a whole country can take the lead and sort it out. I think including a quick reference to the Netherlands as an example of excellent OA policy (in the same way that you mention sciELO in Latin America) would go a long way towards convincing the people who are reading this thinking, "ah, yes, I guess OA makes sense in the developing world, but we're doing fine here in the West and it would be too difficult to change things". A good summary of that is here:
http://openaccess.nl/en/in-the-netherlands/current-situation

Final remarks

That's the end of my 2800-odd word review. I really enjoyed reading this paper, going through it, and trying to find ways to improve it. Thanks to the authors for writing an excellent paper.

References

Competing Interests: Non-financial: I'm an Open Access advocate, and so I have a vested ideological interest in seeing papers like this succeed and reach wide audiences. However, if anything, I believe that makes my peer review more critical, as I want this paper to be the best paper it can be.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Discuss this Article

Version 1

Author Response 06 May 2016

Jon Tennant, Imperial College London, UK

Thank you for the additions to the discussion. We agree that econometric studies can also be subject to debate and are interested in hearing what you think might be problematic about them.

Additionally, in this article we only wanted to stress that the APC model does not necessarily destroy all business and that it does seem to work for some journals/publishers. Nonetheless, you raise a valid point and we will stress in the revised version of the article that not all OA models necessarily sustain the current ecosystem. The discussion you raise about the level of APCs and the necessity of journals as publishing systems are interesting, and we fully agree that they are relevant to the question whether journals survive. We will add this remark, but refrain from providing an answer to these issues, because they are normative and hence do not fit in the scope of this review.

Competing Interests: No competing interests were disclosed.

Author Response 27 Apr 2016

Jon Tennant, Imperial College London, UK
Dear David,

Many thanks for taking the time to provide an extended comment, we, the collective authors, appreciate it. Below, we provide our response to the points raised.

- The link to the Wellcome Trust blog post can be found here: https://blog.wellcome.ac.uk/2016/03/23/wellcome-trust-and-coaf-open-access-spend-2014-15/- we will amend this in our future revision of this MS.
- Thank you for pointing out the phraseology of the sub-headings. We agree with you that this does appear to inflict bias on our MS, and is a hangover from a previous draft of this review. We will amend this in the next version to more accurately reflect the content of the MS, and also incorporate the comments from the referee reports, especially that of Paige Brown Jarreau, into this.
- You indicate that an “obvious adverse impact is the loss of subscription revenue” regarding green open access. We comment upon this in the first paragraph of the paper: “Some publishers require an embargo period before deposit in public repositories is allowed. These embargoes are applied in order to avoid putative reductions in subscription income due to such self-archiving.” However, empirical evidence fails to support this ‘obvious’ claim, and we refer you to Berners-Lee et al., 2005; Swan, 2005; Henneken et al., 2007, Houghton et al., 2010, Bernius et al., 2013, and the Committee for Economic Development, 2012), which all indicate that not only is there no loss of subscription income from green open access, but that both can indeed coexist as a sustainable business model for publishers. Furthermore, there is little evidence to support the commonly held inference that shorter or zero-length embargoes will have a detrimental effect on publisher incomes (BIS Select Committee report, 2013-14; but see also Jubb, 2011). According to the RoMEO journals database, only 13% of journals do not permit immediate self-archiving of either the accepted (60%) or submitted (an extra 27%) versions of articles (as of 2011: https://romeo.jiscinvolve.org/wp/2011/11/24/60-of-journals-allow-immediate-archiving-of-peer-reviewed), therefore it is unclear why such a widespread practice would exist for journals if it was detrimental to their finances. Indeed, the only case in which there would be a subscription loss would be if there was no value added throughout the publication process subsequent to acceptance of a peer reviewed manuscript, which is clearly not the case. Therefore, there is little empirical evidence that we are aware of to support the ‘obvious adverse impact’ suggested, including loss of functionality for scholarly societies and termination of journals. We will amend the text to clarify this point.
- The comment that APCs will be unable to sustain the current journal ecosystem is also not supported by current evidence. We refer to the White Paper issued by the Max Planck Society, which provides evidence for a sustainable global switch from subscription to APC-driven open access publishing (Schimmer et al., 2014). We recognise that these are different economic models, but present evidence suggests that the potential disbenefits outlined cannot be supported.
- The comment that APCs will be taken from research funding, thus reducing the amount of research, is also not strongly supported by current evidence. While we recognise that this is a possibility in some cases, research funders now typically, but not entirely, provide additional funds where OA is required in order to support APCs. The case of the RCUK at a national level in the UK is good evidence to support this (http://www.rcuk.ac.uk/media/news/121108/), as well as funding bodies such as the Wellcome Trust (http://www.wellcome.ac.uk/about-us/policy/spotlight-issues/Open-access/Guides/wtx036803.htm). One could could make the simple counter-argument that the amount spent on subscriptions (estimated at €7.6 billion per year) by university libraries and research organizations is much more detrimental in removing income from the research system than the relatively lower amounts currently spent on APCs.
We agree with the comment that “those who cannot afford the APCs will not be able to publish”. We comment on this in the context of the developing world: “The shift from a ‘reader pays’ to an ‘author pays’ model with OA potentially limits its adoption in developing countries. The pay-to-publish system is a potentially greater burden for authors in developed countries, considering that they are not used to pay publication costs, and funding systems for OA are not as well-established as those in the Western world.”, and will revise this statement to indicate that APCs are also often currently unaffordable for researchers beyond the developing country to, to better address your concern. We will furthermore note that many journals also have fee waivers for APCs in place for researchers who cannot afford them, including PeerJ and PLOS ONE (not only researchers from developing countries). These issues were discussed in a recent presentation on the economics of OA by Jeffrey MacKie-Mason (summarized here: http://madlibbing.berkeley.edu/economic-thoughts-about-gold-open-access/), which we also plan to incorporate into the MS. This also ties in with the previous comment from Ross Mounce, who suggests that current levels of APCs are not sustainable and can be reduced in order to be more affordable for researchers. We will append the MS accordingly to accommodate this.

Regarding the comment about APCs being too low and forcing peer review out, it should be noted that peer reviewers are not typically paid anyway, so it is not clear why would they be forced out if there isn’t enough APC funding. Moreover, some OA models (e.g., Collabra) now include optional payment for the reviewers, so from a traditional economic perspective one might argue that reviews in these OA journals would improve. Nonetheless, it is more likely that paid copy editors, formatters, and people devoted to the marketing and management of the journal will be more likely to lose out, which is certainly problematic, but does not involve peer review, and we will stress this point in the next version of the MS. This also relates to the previous comment, including that by Ross Mounce, in which it has been demonstrated that the system is fully functional at much lower APC costs. It should be noted that it is presently unclear in which context “unsustainable” is used: this means very different things to publishers, funders, and researchers, for example.

As for the last comment, we have addressed much of these disbenefits in the text already. Others noted are not empirically supported. However, in each instance we will provide additional context, as noted here, to clarify any additional potential disbenefits. This is most clearly the case in the comment that APCs at their current level are unaffordable to many, which we will be sure to comment more upon as a side effect of current OA policies, and also by incorporating information provided by the other commenters and referees.

We thank you for your thoughtful and constructive comment, and we will make sure to amend the text appropriately to accommodate your points.

References
Schimmer R, Geschuhn KK, Vogler A: Disrupting the subscription journals' business model for the necessary large-scale transformation to open access. 2014. Available at: http://pubman.mpdl.mpg.de/pubman/faces/viewItemOverviewPage.jsp?itemId=escidoc:2148961

Competing Interests: I am the corresponding author for this paper.

Author Response 18 Apr 2016

Jon Tennant, Imperial College London, UK

Dear David,

Many thanks for your comment. In the revised version of this article, we will pay extra attention to the language used, in particular with the headings to address potential issues with objectivity. While we were careful to provide a balanced argument, and provide numerous references to support these, it is possible of course that we have missed some key studies or counter points. Based on your comments, we would greatly appreciate any insight or links to the proposed counter-arguments so that we can strengthen the discussion throughout the paper.

Best,

Jon

Competing Interests: I am the corresponding author for the paper.

Author Response 14 Apr 2016

Jon Tennant, Imperial College London, UK

Dear Ross and Philip,

Many thanks for these thoughtful and constructive comments. They will be given full consideration, and integrated into the next version of this manuscript pending the organised peer review process.

Best,

Jon

Competing Interests: I am the corresponding author for this paper.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com