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Abstract

Lamins are major components of the nuclear lamina, a network of
proteins that supports the nuclear envelope in metazoan cells. Over
the past decade, biochemical studies have provided support for the
view that lamins are not passive bystanders providing mechanical
stability to the nucleus but play an active role in the organization of
the genome and the function of fundamental nuclear processes. It has
also become apparent that lamins are critical for human health, as a
large number of mutations identified in the gene that encodes for A-
type lamins are associated with tissue-specific and systemic genetic
diseases, including the accelerated aging disorder known as
Hutchinson-Gilford progeria syndrome. Recent years have witnessed
great advances in our understanding of the role of lamins in the
nucleus and the functional consequences of disease-associated A-type
lamin mutations. Many of these findings have been presented in
comprehensive reviews. In this mini-review, we discuss recent
breakthroughs in the role of lamins in health and disease and what
lies ahead in lamin research.
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Lamins and the nuclear lamina

Lamins are members of the family of intermediate filaments that
are largely but not exclusively localized to the nuclear lamina, a
multiprotein mesh structure found on the inner side of the nuclear
membrane of most metazoan cells'~". Mammalian cells have two
types of lamins: A-type lamins, which are expressed in most termi-
nally differentiated cells, and B-type lamins, which are expressed
in most or all somatic cells (Figure 1). A-type lamin A and C are
encoded by the LMNA gene and generated by alternative splicing,
whereas B-type lamin B1 and B2 are encoded by two separate
genes: LMNBI and LMNB2. Short lamin C2 and lamin B3 isoforms
encoded by the LMNA and LMNB?2, respectively, are expressed only
in gametes®*. Two minor isoforms of lamin A (A10) and lamin C
(C2) have also been identified, but their function and regulation are
not yet fully understood’. Lamin A, B1, and B2, but not lamin C,
have a carboxy-terminal CaaX motif (C is cysteine, a is an aliphatic
amino acid, and X is any amino acid) that undergoes sequential
cysteine farnesylation, aaX cleavage, and carboxy methylation.
Whereas these modifications are permanent on lamin B1 and B2,
lamin A is synthesized as a prelamin A precursor that undergoes
an additional processing step catalyzed by the Zn metallopepti-
dase STE24 (ZMPSTE24) that removes the carboxy-terminal
15-amino-acid tail, including the modified cysteine to generate
mature lamin A. Farnesylation is thought to strengthen the associa-
tion of B-type lamins with the inner nuclear membrane, while the
lack of this modification in lamin A and C allows these lamins to be
more loosely associated with the nuclear envelope and also occupy
the nucleoplasmic space. Lamins are believed to provide a frame-
work that supports the assembly and stability of the nuclear envelope
and contributes to nuclear shape and mechanotransduction'*"*,
Moreover, a growing body of research has provided compelling
evidence that lamins make significant contributions to the dynamic
organization and function of the genome'~’. Determining the
function of lamins is of critical importance for human health
because of the large number of mutations identified across the
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LMNA gene that are associated with a class of human disorders,
collectively known as laminopathies, whose clinical symptoms
include skeletal or cardiac muscular dystrophy, lipodystrophy,
dysplasia, dermopathy, neuropathy, leukodystrophy, and accel-
erated aging”'’. The discovery in 2003 that Hutchinson-Gilford
progeria syndrome (HGPS), a rare premature aging disease that
affects children, is caused by a de novo LMNA mutation that leads
to impaired processing of prelamin A and the production of a per-
manently farnesylated mutant lamin A protein termed progerin'"'?
has led to an escalation in lamin research with the hope of finding
a cure for this devastating disease. Expression of progerin causes
severe cellular defects that affect nuclear morphology, chromatin
organization, telomere length homeostasis, DNA repair, nucleo-
plasmic transport, and redox homeostasis'*~"". Recent studies
have provided critical information on the contribution of lamins
to nuclear mechanics and the spatial organization of the nucleus
(Figure 2) and provided considerable experimental evidence for
the hypothesis that lamin A mutations disrupt processes that are
critical for nucleocytoplasmic mechanotransduction, nuclear
positioning, chromatin organization and function, and responses to
stress.

Lamins in nuclear mechanobiology

The nucleus plays a critical role in the response to mechanical
forces, and new research adds to a growing body of evidence
implicating lamin A/C and the linker of nucleo-skeleton to
cytoskeleton (LINC) complexes, which bridge the nuclear lamina
to the cytoskeleton, in tissue adaptation to mechanical forces”*'*.
Lamins form high-molecular-weight structures, and high-resolution
microscopy data have revealed that A- and B-type lamins are
organized in a distinct but interdependent meshwork of fibrils'".
Each of these structures is likely to contribute to maintaining the
organization of the nuclear lamina and the shape of the nucleus.
Yet the observation that depletion of lamin A/C increases nuclear
deformability in response to mechanical stress suggests that lamin

gene protein processing pathway
— > laminC X X
LMNA } , _
———prelamin A v ———— maturelamin A
LMNB1 laminBl —— v X
LMNB2 laminB2 —m8 — Vv X

sequential C-terminal

Removal of

farnesylation, aaX cleavage and C-terminal 15

carboxy methylation

amino acids

Figure 1. Major A-type and B-type lamins in mammals. Prelamin A, lamin B1, and lamin B2 contain a carboxy-terminal CaaX motif (CSIM
in human prelamin A, CAIM in lamin B1, and CYVM in lamin B2; C is cysteine, S is serine, | is isoleucine, M is methionine, A is alanine, Y is
tyrosine, and V is valine) which is modified by farnesylation. This is followed by proteolysis of the aaX residues and carboxy methylation at the
C-terminal end of lamin A, B1, and B2. Prelamin A undergoes further processing to remove the carboxy-terminal 15 amino acids, including
the farnesylated and carboxy methylated cysteine to generate mature lamin A. In Hutchinson-Gilford progeria syndrome cells, the second
cleavage site in prelamin A is deleted, and this results in the accumulation of a permanently farnesylated and carboxy methylated prelamin A
variant termed progerin. Terminal cleavage of prelamin A is catalyzed by the zinc metallopeptidase ZMPSTE24, an enzyme that has recently
been implicated in clearing proteins through clogged endoplasmic reticulum translocon channel®.
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Figure 2. Lamins influence the mechanical properties of the nucleus and contribute to genome organization, function, and stability.
Lamins have roles that support various aspects of nuclear structure and function. Lamins provide mechanical strength to the cell nucleus
and contribute to cellular mechanotransduction. Lamins influence the nucleoplasmic environment and contribute to shaping the spatial
organization of the genome. Lamins influence genome function and stability by contributing, through interactions with various nuclear factors,
to the epigenetic regulation of chromatin, DNA replication and repair, and gene transcription.

A/C fibrils play a prominent role in regulating the stiffness and elas-
ticity of the nucleus”’'. Consistent with these data, differences in
lamin A/C expression leading to changes in lamin A/C-to-B ratio
have been demonstrated across distinct cell types, with higher
lamin A/C levels observed in cells of tissues often subjected to
mechanical torsion, including muscle and heart”. Variations in the
lamin A/C-to-lamin B ratio have also been observed during
hematopoiesis™, and it is likely that changes in lamin A/C expression
affect nuclear stiffness in cancer cells, which may contribute to path-
ological outcomes, including metastasis*. A recent study has also
identified force-dependent changes in lamin A/C conformation®,
suggesting that other mechanisms of lamin A regulation contrib-
ute to adjusting nuclear shape in response to stress. Research on
lamin A/C mutations linked to Emery-Dreifuss muscular dystro-
phy (EDMD) and dilated cardiomyopathy (DCM) further under-
scores a role of lamin A/C in nuclear mechanics* . These studies
demonstrated that several disease-causing mutations compromise
the stiffness of the nucleus and the integrity of the nuclear enve-
lope, including the nuclear pore complex, in cells of the affected
tissues. Remarkably, a recent report showed that muscle structure
and function in an animal model of EDMD with tissue-specific
alterations in nuclear mechanics are returned to normal by gene
inactivation of the enzyme responsible for protein prenylation®.
Although the precise mechanism underlying this observation
remains to be determined, it is possible that changes in the prop-
erties, physical interactions, or high-order structure formed by
unfarnesylated lamin B confers protection against tissue-specific
mechanical stress in this animal model. It is important to point out
that not all LMNA gene mutations linked to EDMD or DMC, nor
mutations associated with familial partial lipodystrophy, result in
nuclear fragility’*, suggesting that distinct mechanical properties
or nuclear functions are affected by different lamin A mutations.

Lamins in chromatin structure and spatial
organization of the genome

Within the past few years, efforts have been directed at better under-
standing the relationship between lamins and genome organization
and stability. Both A- and B-type lamins bind DNA in vitro®® and
associate with chromatin in vivo™'', and their loss affects genome
integrity*. Analysis of chromatin-lamin interactions using an
in vivo tagging approach (DNA adenine methyltransferase iden-
tification, or DamID)*+** demonstrated that lamins make dynamic
contacts with large regions of chromatin, which have been termed
lamina-associated domains (LADs), adjacent to the nuclear
lamina. These domains are enriched in repressive histone markers,
including dimethylated H3K9 and trimethylated H3K27, sug-
gesting that LADs represent a repressive chromatin environment.
In spite of these findings, the role of lamins in the formation of
LAD remains unclear. A recent study has indicated that lamin C is
sufficient for LAD formation at the nuclear lamina’’, and another
has questioned the need of any lamin for the formation of these
domains®. Interestingly, whereas the DamID studies suggested a
very high degree of concordance between lamin A/C- and lamin
B-associated chromosome domains, recent work using a chromatin-
immunoprecipitation approach has identified a subpopulation of
lamin A/C that interacts with active regions of chromatin, in coor-
dination with the lamin-associated factor LAP20.". These are likely
interactions that occur within the nucleoplasmic space away from
the nuclear lamina since LAP2a colocalizes with lamin A/C within
the nuclear interior*'. Importantly, both LAP20. levels and the
nucleoplasmic pool of lamin A/C are dramatically reduced in the
presence of the lamin A mutant progerin***, and these changes
are thought to influence processes that are critical for cell prolif-
eration. The conclusion of this and other recent studies on this topic
is that a tight balance between lamin A/C and LAP20. must be
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maintained to ensure proper cell function, although how this is
achieved remains to be worked out. Other studies have also demon-
strated that lamins, together with other components of the nuclear
lamina termed nuclear envelope transmembrane proteins (NETs),
contribute to tissue-specific organization of the genome and influ-
ence gene expression by securing peripheral heterochromatin to the
nuclear lamina and repositioning genes within the nucleus during
cell differentiation*>. The NET lamin B receptor (LBR) has also
been recently implicated in the recruitment of the X chromosome
to the nuclear lamina to promote X-inactive-specific transcript
(Xist)-mediated gene silencing’®. Taken together with the observa-
tion that muscle-specific chromatin reorganization is disrupted in
an animal model of EDMD, these findings suggest that altered
spatial organization of heterochromatin or incorrect positioning of
genes contributes to the development of tissue-specific patholo-
gies in at least a subset of the diseases that have been linked to
mutations in lamins or NETs.

Lamin A and the mutant progerin have been shown to differen-
tially influence the stability and spatial localization of epigenetic
regulators of chromatin structure’"’, and several studies have
reported a gradual decrease in peripheral heterochromatin and
global loss of several histone markers of heterochromatin in
progerin-expressing cells**~>. However, a recent study has added
a twist to this story by showing that increased levels of the
heterochromatic histone modification trimethyl H3K9 contribute
to the development of the progeroid phenotype’. The authors
demonstrated a direct interaction between lamin A and SUV39hl,
a chromatin modifier that is responsible for H3K9me3. Progerin
also binds SUV39hl, albeit more tightly than lamin A, which
results in increased levels of H3K9me3 in progeria cells. This is an
unanticipated result that differs from other studies. A clarification
of the type of epigenetic changes caused by progerin requires fur-
ther investigation, but it is possible, as suggested by the authors
of this study, that the decreased heterochromatinization reported
by others reflects an in vitro cell passage-dependent effect rather
than an in vivo process. The concept that progerin disrupts lamin
A-protein interactions that locally influence chromatin organiza-
tion is supported by another recent study>. In this work, lamin A
is shown to recruit chromatin modifiers through interactions with
barrier-to-autointegration factor (BAF), a family of proteins that
are thought to mediate interactions between various factors and
chromatin™. As seen with SUV39hl, progerin binds stronger
than lamin A to BAF and this interaction results in BAF mislo-
calization, leading to epigenetic changes that alter chromosome
organization and are likely to contribute to cell dysfunction.

Lamins in the regulation of nuclear processes

Fundamental nuclear processes such as transcription, replication,
and DNA repair are tightly connected to the spatial organization
of the genome and their function relies on the timely recruitment
of specific factors to the proper chromosome locations. Recent
studies have suggested that progerin disrupts these processes by
preventing the recruitment of specific factors to their target site.
One example is sirtuin 6 (SIRT6), a protein involved in multiple
processes related to genomic stability, stress resistance, telomere
maintenance, and energy homeostasis™. A study has shown that
both lamin A and progerin bind SIRT6, but a stronger interaction
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with progerin results in SIRT6 sequestration to the nuclear lamina,
which prevents SIRT6 from relocalizing to sites of DNA damage.
Taken together with prior data showing that progerin affects the
function of other DNA repair factors'®, these results underscore the
significant hurdle imposed by this mutant lamin A on the pathways
that maintain genome integrity. Intriguingly, SIRT6 also plays a
role in the recruitment to telomeres of the Werner syndrome protein
(WRN)”", a protein whose loss-of-function mutations cause genetic
instability leading to an adult-onset type of progeria®™. Although it
is not known whether WRN function is affected in cells express-
ing progerin, it is possible that mislocalization of SIRT6 prevents
WRN recruitment to telomeres, and this may contribute to telomere
dysfunction in HGPS cells. Unfortunately, overexpression of SIRT6
is not sufficient to rescue progeria cell dysfunction, thus limiting

59

the usefulness of potential SIRT6-based therapeutic interventions™.

In support of the idea that sequestration by progerin is a major
mechanism leading to cell dysfunction, it has recently been reported
that progerin binds NRF2, a transcription factor that regulates the
expression of genes involved in maintaining redox homeostasis®,
and relocates it to the nuclear lamina®'. Oxidative stress, which
has been linked to defective nucleocytoplasmic transport and is
likely contributing to persistent DNA damage in HGPS cells*~,
appears to be a central factor in the pathophysiology of progeria.
Since ectopic expression of constitutively active NRF2 ameliorates
several of the cellular defects of progeria cells, deregulation of
NRF2 function has been suggested to be a primary driver of accel-
erated aging. Although it is unclear how constitutively active NRF2
escapes sequestration to the nuclear lamina by progerin, these
findings suggest that therapeutic approaches that restore NRF2
function may be beneficial to patients with HGPS. Deregulation
of NRF?2 has also been observed in cells from muscular dystrophy
patients expressing certain missense lamin A mutants that tend
to mislocalize to the cytoplasm®’. However, this study reported
activation rather than repression of NRF2 in these cells through a
mechanism that does not involve lamin A binding.

Therapeutic approaches to Hutchinson-Gilford
progeria syndrome

Translation of basic science findings into therapeutic approaches
is the uttermost goal of biomedical research. In this regard, the
Progeria Research Foundation (http://www.progeriaresearch.org),
a non-profit organization founded by the parents of a child with
HGPS, has been influential in raising awareness and funds for
research on finding a cure for this disease, and these efforts have
contributed significantly to the large increase in lamin A research
during the last decade. The cellular toxicity of partially processed
prelamin A mutants like progerin is due primarily to the presence
of the farnesyl group at the carboxy-terminal cysteine. Drugs that
inhibit protein farnesyl transferase (farnesyl transferase inhibitors,
or FTIs) have been shown to improve the cellular phenotype of
progeria cells and ameliorate the pathology of mouse models of
the disease®"”. FTIs may also hold therapeutic potential for patients
carrying EDMD-linked mutations”. Driven by these findings,
the Progeria Research Foundation sponsored a single-arm clinical
trial using the FTI lonafarnib and reported improvements in weight
gain, bone structure, and the cardiovascular system of patients with
progeria®’. However, FTIs are far from being a cure for progeria

Page 5 of 10


http://www.progeriaresearch.org

and better drugs are urgently needed. Since then, a new clinical trial
using pharmacological inhibitors of the mevalonate biosynthetic
pathway (pravastatin, zoledronic acid, and lonafarnib) has been
under way, and preliminary findings have just been published®'.
They indicate that even though the three-drug regimen improves
bone size and mineral density, no additional benefit over the
one-drug treatment is observed in cardiovascular structure and
function. Small molecules that reduce the accumulation of pro-
gerin (that is, rapamycin) or influence the microtubule network
(that is, remodelin) have recently been shown to have beneficial
effects in tissue culture models of progeria®-*', and they offer new
opportunities for therapeutic intervention. Rapamycin may have a
therapeutic effect on other laminopathies, since temsirolimus, a
rapamycin analog, has been shown to counteract the deterioration
of cardiac function in a murine model of cardiomyopathy caused
by a lamin A mutation®. Future studies in animal models will
be crucial to better understand the efficacy and usefulness of these
and other new drugs in treating patients with LMNA mutations.

Future challenges

The number of articles published on lamins has grown exponen-
tially during the last few years, and tremendous progress has been
made in understanding the biological properties of these proteins
and lamin A mutants associated with disease. In spite of this gained
knowledge, a number of challenges remain. More studies are
needed to better understand the relative contributions of lamin A
and lamin C to the dynamic spatial organization of the genome in
different cell types during development and differentiation. The
potential role of lamins in organizing transcription or replication
units and DNA damage repair foci needs to be further explored, and
future investigations are expected to provide important insights on
these topics. Relatively little is known about the molecular mecha-
nisms of tissue-specific disorders caused by LMNA missense muta-
tions that do not affect prelamin A processing. A study in cells from
a mouse model of DCM has recently shown that expression of a
missense mutant N195K-lamin A (N195K) impairs nucleocytoplas-
mic shuttling of a key factor in cardiac development™. These results
suggest that a single amino acid change in the lamin A polypeptide
induces structural alterations that influence the intracellular distri-
bution and function of a cell-type-specific factor. In a new report,
two missense LMNA mutations linked to muscular dystrophy
(R453W and R482W) have been shown to disrupt LAD and alter
heterochromatin organization during myogenic differentiation®’.
These findings strengthen the idea that lamin A/C contributes
to the spatial and structural remodeling of chromatin that takes
place during cell differentiation. There are hundreds of mutations
in the LMNA gene known to be associated with tissue-specific
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diseases’. Thus, one may speculate that at least some of these
mutations cause tissue-specific defects by affecting the localiza-
tion or subcellular distribution of factors that, by regulating cell-
type-specific regulatory genes or pathways, orchestrate the spatial
organization and function of the nucleus. There is also more to
learn about the functions of lamin B1 and B2, which, in spite of
the high degree of sequence conservation, do not seem to be func-
tionally redundant®*. There is strong evidence that B-type lamins
are required for DNA replication, and recent work has identified
a specific role for lamin B1 during the elongation phase of this
process’>”?. Both lamin B1 and B2 have also been implicated
in neuronal migration and survival, and altered distribution of the
nuclear pore complex has been observed in lamin Bl-deficient
cortical neurons”™™’. This defect has been suggested to affect
nucleocytoplasmic shuttling of certain factors’’, which is reminis-
cent of the cellular defect caused by the lamin A mutation asso-
ciated with DCM discussed above*’. These are findings that bring
excitement as well as challenges to an area of research that is
predicted to expand further over the next several years.
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