cophesim User Manual

Ilya Y. Zhbannikov¹, Konstantin G. Arbeev¹, Anatoliy I. Yashin¹

¹Biodemography of Aging Research Unit (BARU) at Social Sciences Research Institute (SSRI), Duke University, Durham, NC,

Keywords:

Bioinfomatics, Genomics, Data Simulation, Artificial Data, Synthetic Data

Correspondence:

Ilya Y. Zhbannikov Biodemography of Aging Research Unit (BARU) at Social Sciences Research Institute (SSRI) Duke University Durham, NC, 27705 Email: ilya.zhbannikov@duke.edu

Running Title:

cophesim: a user manual

1 Introduction

- 2 cophesim a comprehensive phenotype simulator for genetic data, i.e. cophesim adds pheno-
- 3 type to provided genotype files.

4 2 Installation

5 2.1 Prerequisites

- Python v2.7.10
- plinkio v0.9.6
- R v3.2.4 (for the examples)
- PLINK v1.7 (for the examples)

10 2.2 How to install

- 11 cophesim is an open-source software application available from the Bitbucket for free under this
- link: http://bitbucket.org/izhbannikov/cophesim.
- 1. Install prerequisites: Python, plinkio (if you were not able to install plinkio, just skip it. The "cophesim" will still work, but not able to handle binary (.bed, .bim, .fam) PLINK files,
- only .ped and .map files will be handled), R, PLINK.
- 2. Download or clone the cophesim repository: https://bitbucket.org/izhbannikov/cophesim.
- Save under some name you wish and unzip. The software is ready to use.
- 3. Additionally, you may download the data repository:
- https://bitbucket.org/izhbannikov/cophesim_data. It provides some simulated data and
- code examples.

Save the file under some name you wish and unzip. The software is ready to use.

22 **2.3** Usage

```
23 cophesim.py -i <path to genotype> -o <output prefix> [options]
```

24 2.4 Options

25 Input option described in Table 1

26 **2.5 Description of input files**

- 27 Input genotype data can be in one of the formats generated from the following applications: Plink
- 28 (.bed, .bim, .fam); ms, msms, msHot (plain text file); Genome (plain text file). Plink format is used
- by default. In this case you have to provide a path to the files (i.e. full prefix without file extension).

2.6 Description of output

- 31 cophesim generates the following output files:
- 1. Phenotype file. This file is in text format and has the following suffices depending on the simulated phenotype trait: _pheno_bin.txt, _pheno_cont.txt, _pheno_surv.txt representing dichotomous (binary), quantitative (continuous) and survival phenotype. Below we show description of columns.
- pheno_bin.txt:
- Individual ID
- Sex
- Phenotype

Table 1: Input options

Option Extended option Description		
-h	-help	Show the help message and exit.
-i IDATA	-input IDATA	Path input file(s). Extension should not be
TIDITIT	input 1D/11/1	used in itype = plink.
-0 OUTPUT PREFIX	-output OUTPUT_PREFIX	Output prefix.
-itype ITYPE		Input format: plink (for Plink, default),
hype II II L		ms (for ms, msms, msHot), genome (for
		Genome).
-otype OTYPE		Indicates output format, by default
otype of file		OTYPE=plink. Other possible out-
		put format: blossoc (for BLOSSOC),
		qtdt (for QTDT), tassel (for Tassel),
		emmax (for EMMAX).
-d	-dichotomous	A flag for dichotomous phenotype, True
		by default.
-c	-continuous	A flag for continous phenotype, False by
		default.
-S	–suvival	A flag to simulate survival phenotype,
		False by default.
-ce CEFF		A path to the file with effect of
		each causal SNP. Must be in format:
		snp_index:effect. One snp per line.
-alpha ALPHA		An 'alpha' parameter for inverse proba-
1		bility equation for the Gompertz hazard
		(see Bender at al., Generating survival
		times to simulate Cox proportional haz-
		ards models), 2005. Default ALPHA =
		0.2138
-epi EPIFILE		File with interacting SNPs.
		One pair per line. Format:
		snp1_index, snp2_index, effect
-weib		A flag to use Weibull distribution for sur-
		vival phenotype. True by default.
-gomp		A flag to use Gompertz distribution for
- -		survival phenotype. False by default.
-LD LDFILE		File with collinear SNPs. One pair per
		line. Format:
		<pre>snp1_index, snp2_index, corr_cf([-1, 1</pre>
		<pre>snp1_index, snp2_index, corr_cf([-1,1</pre>

- Individual ID
- Sex
- Phenotype
- 44 _pheno_surv.txt:
- Individual ID
- Sex
- Age (phenotype)
- Case
- 2. Genotype file(s). Can be in the following formats: Plink (.bed, .bim, .fam).

 Other possible output format: blossoc (for BLOSSOC, suffices .blossoc_pos,

 blossoc_geno), qtdt (for QTDT, suffices .ped, .map, .dat), tassel (for Tassel,

 suffices .poly, .trait), emmax (for EMMAX, suffices .emma_geno, .emma_pheno).
- 3. Summary statistics file. This is a plain text file which keeps the information about the run.

54 2.7 Examples

55 Below we show several examples of usage of cophesim.

56 2.7.1 Quick start

```
57 plink --simulate-ncases 5000 --simulate-ncontrols 5000 --simulate wgas.sim \
58 --out sim.plink --make-bed
59
60 python cophesim.py -i sim.plink -o testout
```

- The first command runs the data simulation. Here we simulate genetic dataset of 10k individ-
- uals, 5k cases and 5k controls. SNPs defined in wgas.sim (should be in the cophesim home
- 63 directory). Then with next command we add a phenotype (dichotomous by default) to simulated
- 64 genetic data.
- To simulate continuous phenotypic trait, add the '-c' flag:
- 66 python cophesim.py -i sim.plink -o testout -c
- This will simulate both continuous and dichotomous traits. To simulate survival trait, add '-s'
- 68 flag:
- 69 python cophesim.py -i sim.plink -o testout -s
- 70 2.7.2 Specifying causal variants
- Causal variants are specified in the file effects.txt and the option '-ce' is used:
- 72 python /Users/ilya/Projects/cophesim/cophesim.py -i sim.plink -o testout \
 73 -ce effects.txt
- The file effects.txt if a plain text file and causal SNPs are specified in the following format:
- 75 snp index:effect
- Here snp_index is the index of causal SNP and effect is the effect size. Example:
- 77 19:-0.82.

78 2.8 Specifying epistatic interactions

⁷⁹ Epistatic interaction are specified in the 'epifile.txt' with the '-epi' flag:

```
80 python /Users/ilya/Projects/cophesim/cophesim.py -i sim.plink -o testout \
81 -ce effects.txt -epi epifile.txt
```

- The file epifile.txt if a plain text file and a pair of interacting SNPs is specified in the following format:
- 84 snp1_index,snp2_index,effect
- Here snp1_index is the index of the first interacting SNP (snp1), snp2_index is the index
- of the second interacting SNP (snp2) and effect is the corresponding effect size of this interact-
- 87 ing pair. Example: 12, 16, 1.57.

3 Acknowledgements

- 89 This work was supported by the National Institute on Aging of the National Institutes of Health
- 90 (NIA/NIH) under Award Numbers P01AG043352, R01AG046860, and P30AG034424. The con-
- 91 tent is solely the responsibility of the authors and does not necessarily represent the official views
- of the NIA/NIH.