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Supplementary Methods 
Databases 
 
We combined structure-activity data from ChEMBL 22.1 1, DrugBank 5.0.2 2, PDSP Ki Database 3, 
LigandExpo 1 4, Binding DB 5, T3DB 6 and the TTD 4.3.02 7. Prior molecule preprocessing and 
standardization using MOE, CDK and RDKit nodes in KNIME, compounds were clustered using INCHI 
keys, as well as DrugBank and ChEMBL IDs when available. Compound names were mapped to 
DrugBank synonyms, and chemical structures were converted to INCHI codes as calculated in KNIME 
3.3 with RDKit nodes. If molecules were too similar (i.e., INCHI codes matched perfectly, or they had 
Tanimoto coefficient > 0.7 using ECFP4 and target similarity > 0.7), they were clustered as well. We 
removed PAINS compounds using a published KNIME workflow 8. 

Target-compound associations were sometimes repeated within and among databases, sometimes 
with different potency data. All associations originated from qualitative datasets (i.e., DrugBank, 
LigandExpo, T3DB and TTD) were regarded as active. Quantitative datasets required further curation. 
For them, we considered a threshold of 5 in terms of logarithmic potency data (e.g., pIC50, pKi50 = 5) 
for considering a compound to be “active”. If more than one measurement was available, in order to 
improve consistency of the data, we removed associations with many contradictory results. We 
thereby obtained data for 52 epigenetic targets, that will be submitted for publication in short. We 
selected 4 datasets with similar number of compounds (~200) and different 2D and 3D library 
diversities. 

Molecular descriptors 
Using KNIME 3.3 9 RDKit and CDK nodes, we calculated ECFP4 (1024-bits) and MACCS keys (166-bits) 
fingerprints for all the structures. For assessing tridimensional database diversity, we computed 3D 
similarity of maximum 10 conformers (for lessening the computational expenditure) with ROCS 
version 3.2.1.4 algorithm implemented in OpenEye 10,11. The conformer libraries were generated with 
OMEGA, version 2.5.1.4 from OpenEye 12,13. 

 

Supplementary Results 

Principal components analysis  

Given that we were designing a method that would be more efficient than the best available 2D or 
3D chemical spaced representation through PCA of the similarity matrix, we used the first 2 or 3PCs 
Euclidean distance using all compounds as satellites (i.e., the whole similarity matrix). 
Supplementary Figure 5 presents a plot of the percentage of variances explained by each of the 
principal components. For more diverse libraries, subsequent principal components are more 
relevant (i.e., in SMARCA2, HDAC1 and DrugBank, although not for DNMT1). 

We compared our “operative” gold standard (using 2 or 3 PCs), against the whole matrix (using all 
principal components) by means of the correlation of the pairwise Euclidean distances, as shown in 
Supp Table 1. Interestingly, there is a high correlation (>0.9) in most of the smaller datasets (except 
SMARCA2, which is 2D diverse, and still retains a correlation >0.7), but this pattern is disrupted in 
HDAC1 and DrugBank datasets (correlations between 0.4 and 0.5). This is, however, a point against 
the use of PCA in general, and does not directly affect the applicability of the ChemMaps approach as 
an approximation of the best possible visualization through PCA.  
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Supplementary Table 1. Correlation matrices of the Euclidean distances calculated with the whole 
matrix, 3PCs and 2PCs. Interestingly, for larger libraries, the correlations drop drastically. 

Dataset  Whole matrix 3PCs 2PCs 

L3MBTL3 Whole matrix - - - 

 3PCs 0.992 - - 

 2PCs 0.983 0.986 - 

CREBBP Whole matrix - - - 

 3PCs 0.988 - - 

 2PCs 0.977 0.987 - 

SMARCA2 Whole matrix - - - 

 3PCs 0.785 - - 

 2PCs 0.766 0.918 - 

DNMT1 Whole matrix - - - 

 3PCs 0.923 - - 

 2PCs 0.913 0.966 - 

HDAC1 Whole matrix - - - 

 3PCs 0.420 - - 

 2PCs 0.421 0.989 - 

DrugBank Whole matrix - - - 

 3PCs 0.449 - - 

 2PCs 0.441 0.994 - 
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Figure S1. 3D-Consensus Diversity Plot depicting the diversity of the datasets used for the 
backwards approach. The higher the median similarity either 2D or 3D, the lower diversity of the 
dataset. The size of the points is proportional to the size of the dataset. The color shows the function 
of the target. CR: chromatin remodeller; DNMT: DNA-methyltransferase; HAT: histone 
acetyltransferase; HMR: histone methylation reader. 
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Figure S2. Backwards analysis with 3PCs picking satellites by diversity. The correlation with the 
results from the whole matrix was calculated with increasing numbers of satellites. Each colored line 
represents one of the five random sets. 
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Figure S3. Backwards analysis with 3PCs picking satellites at random. The correlation with the results 
from the whole matrix was calculated with increasing numbers of satellites. Each colored line 
represents one of the five random sets. 
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Figure S4. Forward analysis with 2PCs picking satellites at random with step sizes of 10%. 
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Figure S5. Plot of the percentage of variance explained by each principal component in the studied 
datasets. 
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