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Supplementary Materials
Review of Existing Viral Load Categorization
Methods
Greub et. al. LLVR
Greub et. al. were particularly focused on detecting low
level viral rebound (LLVR) in patients1. The following
procedure was used to categorize the patients of their
study:
If the patient has two consecutive viral load measurements
(VLM) less than 50, within a 24 week period, and they
have two VLM after this consecutive pair occurs, then the
viral load data for that patient is considered for further
analysis. For the patients that meet this criteria, their
viral load measurements following the consecutive pair are
viewed: if their maximum VLM is greater than 500, then
they are categorized as ‘Viral Failure’, if they are between
51-500 then they are categorized as ‘LLVR’, otherwise they
are labeled as ‘DSVL’. Greub et. al. left out the patients
which did not meet the consecutive pair criteria from their
categorization, hence in our comparative study we will
group them under ‘Unspecified’.

Rose et. al. SMVL/RMVL
The focus of Rose et. al. was to investigate the use of
several frameworks in categorizing suppressed versus not-
suppressed viral load2. First they omitted the patients
from their study whom were virally suppressed at baseline,
where they define viral suppression as < 200 copies/mL
because they were found to have no substantial variation
in their viral loads. In our comparative analysis we la-
bel them as ‘Baseline < 200’. Then, from the remaining
patients they categorize them as either achieving suppres-
sion or not-suppressed using an 8 month window centered
around month 24 after start of VLM (18-30 months). They
considered five different frameworks, which we describe
below:

SMVL omit-participant: If the closest VLM to month

24 is< 200 then the patient is labeled as ‘Suppressed’,
otherwise ‘Not Suppressed’. However if this closest
VLM is outside the range of 18-30 months, then they
are labeled as ‘Ommitted’.

SMVL set-to-failure: Similar to omit-participant,
however if the the closest VLM is outside the range
of 18-30 months, then they are labeled as ‘Not Sup-
pressed’.

SMVL closest-VL: The patient is labeled according to
their closest VLM to month 24 regardless of whether
the VLM is contained in the window.

RMVL repeat binary: We do not use this method
in our comparative analysis because its purpose is
to classify each individual VLM as suppressed or not
suppressed (rather than the patient), which is not the
goal of this paper.

RMVL repeat continuous: The log10 of the VLMs
are modeled as a continuous linear function with its
intercept fixed at the baseline viral load. In our imple-
mentation we add 1 to each VLM to avoid log10(0).
Then the patient is categorized as ‘Suppressed’ if the
model predicts the patient to have a viral load < 200
copies/mL at month 24, otherwise they are labeled
as ‘Not Suppressed’.

Terzian et. al. SHVL
The objective of Terzian et. al. was to develop a method
of categorizing a patient as DSVL or SHVL for the purpose
of monitoring successful ART uptake3. Their procedure
for categorizing patients is as follows:
If the maximum viral load of the patient is ≤ 400
copies/mL then the patient is labeled as ‘DSVL’. If the
patient instead has two consecutive viral load measure-
ments ≥100,000 copies/mL, then the patient is labeled as
‘SHVL’. For our analysis all other patients are labeled as
‘Unspecified’.
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Phillips et. al. Viral Rebound
The aim of Phillips et. al. was to characterize virological
response to ART4. While the statistical methods proposed
by Phillips et. al. went beyond categorizing patients, they
composed a method to identify two populations of HIV
patients (Viral Failure and Viral Rebound):
Only patients who have at least one VLM within the range
24-40 weeks are included in the categorization, all other
patients are labeled as ‘Omitted’ (similar to SMVL omit-
participant). Phillips et. al. chose the 24-40 week range
for a different part of their statistical analysis; however,
in our categorical implementation, we modify the range
to 24-32 weeks to build coherent categories according to
the procedure they outline (as we are about to describe).
Phillips et. al. choose to use 32 weeks as the point of
observing viral load levels because they argue viral load is
expected to decline to 500 copies/mL by week 32 if it is
going to do so4. Thus patients who never achieve VL< 500
copies/mL within 32 weeks are labeled as ‘Viral Failure’. If
the patient does achieve VL < 500 at one point within 32
weeks, but VLM closest to 32 weeks is >= 500 copies/mL,
then this patient is omitted from the categorization. If,
however, the patient’s closest VLM to 32 weeks is < 500
copies/mL, then if the patient has two consecutive VLM
>= 500 copies/mL within 32 weeks, then the patient is
labeled as ‘Viral Rebound’. Phillips et. al. do not describe
them further the patient who did not meet this consecutive
pair criteria, however for our implementation we will label
them as ‘Suppressed’.

Considered but Removed Features
There were several features which were thought to have
significance in segregating viral load patterns but did not
make it into our feature vector. We had to be careful of
extracting features which may be collinear as it would
cause a shift in the weighting of features. These collinear
features are too many to list here. We mention several ex-
cluded features which were generally unreliable or created
overlap between classes that should be unrelated:

1. Minimum.

2. Maximum.

3. Baseline VL.

4. Last VL.

5. Rate of Change. We tried several ways to calculate
this feature: 1) Mean of the first derivate of

#  –
V Lp with

respect to #–t p, 2) Median of the first derivative, 3)
Rate of change between first and last measurements,
4) Fitting a piecewise regression with one knot and
averaging the results of the slope- with the idea that
HVLS will have a clear elbow.

6. Correlation Coefficient. From the fitted piecewise re-
gression (one knot) we also tried averaging the results
of the correlation coefficient, again with the idea that
HVLS will have a clear elbow.

7. Change in Concavity. Calculated as sum of the ab-
solute changes in concavity with the assumption of
equally spaced time (to adjust for issues found in
calculating rate of change):

#      –

dV L i =
#  –
V L i+1 −

#  –
V L i

#                      –
concavi t y i =

#      –

dV L i+1 −
#      –

dV L i

Change = ||#                      –
concavi t y||1

8. Positive Difference. We calculate this as the sum of
all

#      –

dV L i ≥ 0 normalized by the number of elements
satisfying the condition.

9. Negative Difference. We calculated this as the sum of
all

#      –

dV L i < 0 normalized by the number of elements
satisfying the condition.

Centroid Detection Methodologies
Centroid detection is a problem which several machine
learning algorithms attempt to solve, such as Support Vec-
tor Machine (SVM), Bayesian Point Machines (BPM), Ana-
lytic Centre Machines, k-Means, BIRCH, among others5,6.
The center of a cloud of samples is generally considered
the average7, but is still a matter of interpretation. We
attempt to find cluster centers in seven different ways (Fig
S5):

1. Mean. Calculated as the average of each dimension
(feature).

2. Median. Calculated as the median of each dimension
(feature).

3. Best Representative. The best representative is taken
to be the sample whose maximum distance to all the
other samples is a minimum.

4. Bounding Box. If the cloud of points naturally form
an n-dimensional box, then calculating the middle
of the minimum and maximum of each dimension
would lend itself to be the center representation of
the cloud.

5. Smallest Disk. If the cloud of points instead naturally
form an n-dimensional sphere, then it makes most
sense to solve the smallest enclosing disk problem.
There are many algorithms that have been proposed
to solve this problem8–10, where we found the best
solution in our implementation of the algorithms to
be that of Fischer’s fast smallest-enclosing ball, where
he utilizes the properties of the hull and affine spaces
to walk the center to its optimum location9. They
proposed to initiate the center by choosing a ran-
dom sample, however this caused the algorithm to
yield differing solutions on each run. Through ex-
perimentation we found that when we initialized the
algorithm using the sample found from best represen-
tative method, the algorithm consistently converged
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at the solution with the smallest radii, compared to
using any other sample as the initial center. Hence
in our formulation of Fischer’s algorithm we deploy
the best representative method as a subroutine for
initiation.

6. Polyhedral. The trouble with the bounding box
and smallest disk approximations for the center is
that they are designed to work well under circum-
stances where the clusters naturally form either a n-
dimensional box or sphere respectively. We can relax
this constraint by removing this assumption. Rather
we propose to find the convex hull of the data points
and then find the centroid of the hull, in other words,
we find a n-dimensional polyhedron to fit the cloud.
Then, given the intersection of the finite half-spaces
of the convex hull, we can calculate the exact centroid
of the polyhedron- where we use a slight modifica-
tion of Maire’s algorithm5. The hyperplane equations
are calculated in Python using the ConvexHull and
Delaunay packages within SciPy.

7. Push and Pull. The six methods mentioned are not de-
signed to maximize the distance between each cluster
center while minimizing the distance within the clus-
ter. In other words, the above six methods calculate
the center of each point cloud without any dependen-
cies on the other clouds. We propose a push and pull
method, inspired by force-directed graph drawing us-
ing Fruchterman-Reingold’s algorithm11 to include
dependencies on the center of each cloud to improve
performance on centroid learning. That is, let every
sample within the cluster have a pulling force on the
center following Hooke’s Law, F = kd, and let every
sample outside the cluster have a pushing force on
the center following a modified version of Coulomb’s
Law, F = ke

q1q2
d2 . In our case, d represents distance

between the center and sample, and the constants
k, ke, q1, and q2, equal to 1 in order to yield equally
weighted pulling and pushing. For each cluster, we
initialize the center as the mean of the cluster fol-
lowed by iteratively finding the center until achieving
a dynamic equilibrium. We initiate at the mean of the
cluster samples because the spring-like pulling of each
sample on the center is the same as the mean of the
samples pulling on the center with a spring constant
equal to the number of samples (proved below).

Proposition The combined spring-like pull of each sam-
ple, Si , on a center, C, with a spring constant of 1, is
same as a spring-like pull of the mean of the samples,
S, on C with a spring constant equal to the number of
samples pulling on C.

Proof. Let the sample Si and the center C be n-
dimensional vectors such that Si has a spring-like
pulling force on C with a spring constant of 1, that
is, Fi =

||Si−C ||
||Si−C || (Si − C) = Si − C , where 1

||Si−C || (Si − C)
is the direction of the force and ||Si − C || is the mag-
nitude, or distance between Si and C . Notice the

mean of the samples S =
∑n

i=1 Si

n , where n is the total

number of samples, then observe that the sum of the
spring-like forces acting on the center is given by

F =
n
∑

i=1

Fi =
n
∑

i=1

(Si − C)

=
n
∑

i=1

Si −
n
∑

i=1

C

= (
n
∑

i=1

Si)− nC

= n(

∑n
i=1 Si

n
− C)

= n(S − C)

This yields we have that the sum of all the spring-like
forces on C is the same as the mean average of the
samples having a spring-like pull on C with a spring
constant of n, which is the number of samples pulling
on C .

Observe that some clusters have a low number of sam-
ples pulling at the center relative to all the samples
having a pushing effect. Hence, if n is small, then we
will find that the center is pushed more than desired,
and if n is large, then the pull towards the average
will be too strong and hence the center will be no
different from the average. We propose to replace n
with the number of samples having a pushing effect
on the center.

References
[1] Greub G, Cozzi-Lepri A, Ledergerber B, Staszewski S, Per-

rin L, Miller V, Francioli P, Furrer H, Battegay M, Vernazza
P, Bernasconi E, Günthard HF, Hirschel B, Phillips AN,
Telenti A. AIDS. 2002 sep;16(14):1967–1969. Avail-
able from: https://doi.org/10.1097%2F00002030-
200209270-00017.

[2] Rose CE, Gardner L, Craw J, Girde S, Wawrzy-
niak AJ, Drainoni ML, Davila J, DeHovitz J, Keruly
JC, Westfall AO, Marks G. PLOS ONE. 2015
jun;10(6):e0130090. Available from: https://doi.org/
10.1371%2Fjournal.pone.0130090.

[3] Terzian AS, Bodach SD, Wiewel EW, Sepkowitz K, Bernard
MA, Braunstein SL, Shepard CW. PLoS ONE. 2012
jan;7(1):e29679. Available from: https://doi.org/
10.1371%2Fjournal.pone.0029679.

[4] Andrew N Phillips RW Schlomo Staszewski. JAMA. 2001
nov;286(20):2560. Available from: https://doi.org/
10.1001%2Fjama.286.20.2560.

[5] Maire F. An algorithm for the exact computation of the cen-
troid of higher dimensional polyhedra and its application to
kernel machines. In: Third IEEE International Conference
on Data Mining. IEEE Comput. Soc; 2003. Available from:
https://doi.org/10.1109%2Ficdm.2003.1250988.

[6] Han J, Pei J, Kamber M. Data mining: concepts and tech-
niques. Elsevier; 2011.

Page S3 of S4

https://doi.org/10.1097%2F00002030-200209270-00017
https://doi.org/10.1097%2F00002030-200209270-00017
https://doi.org/10.1371%2Fjournal.pone.0130090
https://doi.org/10.1371%2Fjournal.pone.0130090
https://doi.org/10.1371%2Fjournal.pone.0029679
https://doi.org/10.1371%2Fjournal.pone.0029679
https://doi.org/10.1001%2Fjama.286.20.2560
https://doi.org/10.1001%2Fjama.286.20.2560
https://doi.org/10.1109%2Ficdm.2003.1250988


Supplementary Materials: Farooq et. al

[7] Abdi H. Wiley Interdisciplinary Reviews: Computational
Statistics. 2009 sep;1(2):259–260. Available from: https:
//doi.org/10.1002%2Fwics.31.

[8] Welzl E. Smallest enclosing disks (balls and ellipsoids).
In: New Results and New Trends in Computer Science.
Springer-Verlag; 1991. p. 359–370. Available from: https:
//doi.org/10.1007%2Fbfb0038202.

[9] Fischer K, Gärtner B, Kutz M. Fast Smallest-Enclosing-
Ball Computation in High Dimensions. In: Algorithms -
ESA 2003. Springer Berlin Heidelberg; 2003. p. 630–641.
Available from: https://doi.org/10.1007%2F978-3-
540-39658-1_57.

[10] Nielsen F, Nock R. Approximating Smallest Enclosing Balls.
In: Computational Science and Its Applications – ICCSA
2004. Springer Berlin Heidelberg; 2004. p. 147–157. Avail-
able from: https://doi.org/10.1007%2F978-3-540-
24767-8_16.

[11] Kobourov SG. arXiv preprint arXiv:12013011. 2012;.

Page S4 of S4

https://doi.org/10.1002%2Fwics.31
https://doi.org/10.1002%2Fwics.31
https://doi.org/10.1007%2Fbfb0038202
https://doi.org/10.1007%2Fbfb0038202
https://doi.org/10.1007%2F978-3-540-39658-1_57
https://doi.org/10.1007%2F978-3-540-39658-1_57
https://doi.org/10.1007%2F978-3-540-24767-8_16
https://doi.org/10.1007%2F978-3-540-24767-8_16

