Supplementary Material

Appendix 1: justification for gradient-free
weight update rule
The optimization of the spot penalties uses a cost function

that is entirely determined by the total probability P(s)
of mapping a locus to a given spot s in the image:

P(S) = ZpL%s
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Both Z;_., and Z sum terms that are products of the
spot penalties g5, owing to the fact that a direct influence
on any one mapping probability indirectly influences all
other mapping probabilities. However, when the penalty
on some spot s is far away from its proper value, any
mapping probability p;_,s to that spot tends to be satu-
rated very close to either 0 or 1. In this case we make the
approximation that a given penalty factor g, only affects
any given py,_, s directly as a multiplying factor, and does
not affect the mapping probabilities to other spots, since
the indirect influences are small until the mapping prob-
ability is out of saturation. Under this approximation
Ziss = fo-as,and NZ =3, 3" Zp s & fs-as+ by,
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Since our objective is to find an updated ¢, causing the
sum of mapping probabilities to be some target P’(s), we
also write:
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P'(s) =~ XL: i (bs/as). (7)

Solving Egs 6 and 7 together to eliminate the unknown
bs/as gives us the update rule:
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The cost function contains two terms: 1) a penalty for
the overall difference between the expected rate of missing
spots ps, versus that inferred from the summed P(s); and
2) a penalty on P(s) if it exceeds 1, which would indicate a
> 100% likelihood of a locus mapping to that spot. Our
current implementation simply makes two updates, one
pushing P(s) — ps, and the second pushing P(s) — 1
for spots violating normalization. Doing so leads to the
update rule given by Equation 1.

Appendix 2: series expansion derivations

Here we prove a) each series converges to the true parti-
tion function when all terms are counted, and that b) a
given truncation of each series using our recommended se-
lection of series terms counts every possible legal or over-
lapping conformation zero or more times (despite many
series terms having negative coefficients), and therefore
produces positive mapping probabilities. Notice that
both expansions count all legal (non-overlapping) confor-
mations once from Zy, and the goal of considering higher-
order series terms is thus to minimize the weight of the
illegal overlapping conformations without their weights
ever becoming negative. We note that conformations
overlapping at adjacent loci are automatically eliminated
from all terms in the calculation, so the individual confor-
mations we consider here are assumed to overlap them-
selves only between non-adjacent loci.

For our proofs we will define an illegal overlap as a set
of loci in an illegal conformation mapping to a given spot
in the image. Illegal overlaps are to illegal conformations
as illegal constraints are to higher-order series terms, and
we use the same set notation for overlaps as we do for
constraints.

Our derivations make repeated use of the following
identity, taken from Equation 3.1.7 in Ref. [15].

i: <Z> (~1)’ =0 fora >0 (8)

b=0
This relation follows from the fact that the left-hand side
is a series expansion for (1 —1)®.

Series expansion 1 A given conformation bearing a
set of illegal overlaps 6 is counted by each constrained
partition function whose set of illegal constraints (indices)
are a subset of #. Thus the weight Wy of this conformation
in the full partition function 7 is:
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where we have used Equation 8 in the final step. This
result shows that series expansion 1 counts only confor-
mations having no overlaps, i.e. for which ngy = 0.

Suppose that one follows our prescription for evaluating
a subset of terms, namely all terms that are a subset of
overlaps ¥. Then using the same formula, we reason that
a conformation with overlaps 8 will be given the following
weight:
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0 otherwise.

Thus our selection of series terms for expansion 1 elimi-
nates all conformations from the partition function having
any overlaps contained in our set .

Series expansion 2 Expansion 2 allows unconstrained
loci to revisit spots that already have constrained loci. In
this case, a conformation whose set of nonadjacent over-
laps is denoted 6 will be counted by a partition function
having overlaps ¢ if each individual overlap ¢; is contained
in an individual overlap 6;, in the sense that ¢; maps any
subset of nf > 1 loci in #; to the same spot as 6;. Then
the weight of this conformation in the expansion is

where the fact that nk > 0 allowed Equation 8 to elimi-

nate a term in the last line. Defining mk = nf — 1 gives
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again using Equation 8. Therefore the complete series
counts only non-overlapping conformations.

Our prescription for choosing series terms is to select
a set of single-locus-to-spot mappings ¥, and generate
all series terms whose illegal overlaps are built only from
mappings in ¥. To be formal, we will compile all locus-
to-spot-s-mappings in ¥ for each given spot s (assum-
ing there are 2 or more) into a single overlap, and use
1 to denote the set of these overlaps: then the series
order Ny is the sum of the number of loci over all el-
ements ;. Our rule is to include all series terms ¢

Wy =

whose illegal overlaps are built entirely from subsets of
1, in the sense that a given overlap to spot s contains
a subset of the loci in the element v; that maps to spot
s. For example if ¢ contains the element (ACFE), then
» 2 {(AC)s, (CE)s, (AE)s, (ACE)s}. Using these rules,
a given conformation having illegal overlaps 6 will be
given the following weight in the expansion:

Wyt = we
¢={0:C(0:N¢i)}
ngny nk v

1> ( L)t

_ [ 1ifallpd™ <2
| 0 otherwise.

2 eliminates all conformations having any
) — s where L1 — s and Ly — s

Thus series
overlap (L, Lo, ...
are contained in W.

In some instances we might want to enforce a set of
legal constraints « on the calculation of the mapping p-
values, in order to test what happens to the rest of the
mapping under those assumptions. For example if we set
v = {L1 — s1} which forces locus Ly to map to spot si,
then Z(1,_s,)y/Z~ calculates the conditional likelihood
of finding mapping Lo — s under the assumption that
Li — s1. In order to calculate the conditional full and
mapping partition functions Z, and Z(r,_,,),, we sim-
ply remove the set of legally-mapped loci and spots from
consideration and apply series formula 4 or 5 to the set of
unmapped loci and spots. Viewed another way, we simply
remove every term Z., |y where ¢ contains loci or spots
found in 7 from both expansions. To be consistent, we
then forbid unconstrained loci from mapping to legally-
constrained spots contained in v, even when computing a
term in series 2 which does allow them to map to illegally-
constrained spots contained in 6.

Appendix 3: model error

In any real experiment there will be some discrepancy
between the underlying DNA model and the Gaussian
chain model used in the reconstruction. This discrepancy
was also captured in our simulated experiments, whose
DNA contours were generated using a wormlike chain
model, not a Gaussian chain. Here we show that model
error causes our program’s output to underestimate the
reconstruction accuracy in two respects: 1) the reported
mapping p-values are systematically shifted towards the
mean with respect to their true likelihood of being a true
mapping (as we see in Figure S3), and 2) as a result the
entropy of the mapping probabilities S tends to overesti-
mate the true amount of unrecovered information I in a
reconstruction experiment.



The mapping p-values are estimated by summing the
statistical weights of individual conformations, which are
each proportional to the product of statistical weights
for stretching each adjacent pair of mapped loci (L, L;)
between their respective spots (s;, s;). Note that j =i+1
unless there are unmapped loci (i.e. missing spots) in
between. The weight assigned to a given conformation is:

Zeonf X exp | — ZF(LZ-, si, Lj, s5)
L;

where F(L;, s;, L, s;) is the free energy required to con-
nect two spots mapped by loci L; and L;, as deter-
mined by the DNA model. We require that our model
be correctly calibrated in the sense that the estimated
free energy F'(L;, s;, Lj, s;) correlates positively with the
true free energy F(Li,s;,Lj,s;) by a factor A < 1.
Roughly speaking, this requires that 1) the minimum-
free-energy peak of our inferred inter-locus distance dis-
tribution match the peak of the true distribution (which
can be measured in calibration experiments), and 2) that
our approximate model should decay away from that peak
as slowly or more slowly than the true distribution does.
This latter requirement justifies our use of a Gaussian
chain model for reconstruction, as that distribution de-
cays much more gradually off-peak than realistic polymer
distributions. If these requirements are met, the effect of
model error is to partially de-correlate the free energy es-
timates from their true values, which we model by writing
F = AF + R where R is a random term.

Next we assume that the random term R is uncorre-
lated with whether two loci considered by our calculation
are actually connected in the underlying true conforma-
tion. In other words, we assume that there is no conspir-
acy between the discrepancies in the DNA model for real
versus competing spots mapped to loci ¢ and j, whether
the competing spots come from other locations on the
DNA contour or are extraneous or nonspecifically-bound
labels. Under this assumption, the weight Z, assigned
to any inferred (real or incorrect) conformation having
locus-to-spot mappings « is proportional to:

Zy, X exp [ Z ()\iF(Lia si, Lj,s5) + Ri)
L;

Assuming that the DNA contour spans many loci, the
variance in the random terms between conformations is
much less than the variance in F. In the limit where the
random sum is constant the conformational weight is:

Z,, X exp l Z (MF(Li, 86, Ly, 51’))1
L;
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where A < 1 is some average of the \;, and Z, is the
true statistical weight of the conformation, i.e. the weight
that would be assigned by the correct DNA model. Thus
the effect of model error is to reduce the variance in the
conformational weights, by a constant exponent in our
simple approximation.

Next we consider the effect of model error on the map-
ping probabilities py,_, s, where s can denote either a spot
in the image or a missing spot at position L.
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In the limit where A = 1, i.e. a perfect model, we have
PL—s — PL_ss, 1.e. the true p-values given the uncer-
tainty in the data. In the limit where A\ = 0, we have
PL—s — Do,, where po, is the unweighted fraction of
conformations for which L — s and can be thought of as
some ‘average’ p-value for that locus. For intermediate
values of the model error, we find that the p-values go

monotonically between these two extremes by looking at
how they vary with A:

PL—s =
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This is the mean of log (Zm/Zm) taken over all pairs of
mapped/unmapped conformations k; and ke, weighted
by their estimated joint likelihood. Thus if k1 conforma-
tions having the mapping L — s have higher statistical
weight than a typical conformation kg, then the deriva-
tive is uniformly positive, so that the probabilities mono-
tonically increase as the model becomes more accurate
(A = 1). If k1 conformations have lower statistical weight
than a typical conformation, then log (ZNI/ZM,) < 0,
so that the probabilities monotonically decrease as the
model becomes more accurate. Thus the presence of
model error causes the assigned mapping probabilities of
putative mappings L — s to be less extreme than they
should be, and increasing amounts of model error increase
the tendency for these p-values to move towards the mean.
To summarize this we write pr_,s = upr—s + (1 — )po, s
where the new parameter 4 monotonically increases with
A and has the same limits: g = A = 0 for a very poor
DNA model, and g = A =1 for a perfect DNA model.
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dA




Finally, we consider the effect of model error on the er-
ror in the entropy estimate .S, which attempts to measure
the amount of unrecovered information I. Specifically, we
look at the quantity S — (I), which is the expected error
in using entropy as an information estimate averaged over
the various possibilities for the unknown true conforma-
tion K.

S—{I)== proslogprs+ Y Pr Y 10gprs,
L,s R L

~ - Z(pL%s - ﬁL%s) IngLHs
L,s

Here py,_, s is the actual likelihood of the underlying con-
formation having the mapping L — s, given the unknown
true DNA model. Accounting for model error gives us:

S — <I> = - Z((MﬁL%s + (1 - M)pOL) —Pr—s)logpr s
L,s

=(1-p Z (Po, — Pr—s) (—logpr—ss)-
L,s

Next we look at the sign of the sum. Without the
logp weighting factor, the sum over spots for fixed
L would be > (po, —pPr—s) = 1 —1 = 0. How-
ever, the factor (—logpr_s) is always positive, and
largest for the smallest p-values, i.e. those for which
Do, — PL—s is most positive. Thus the overall sum over
(po, — Pr—s) (—logpr—s) is positive whenever there is
any variability in the mapping probabilities. This result
shows that S — (I) > 0 in the presence of model error,
and increases linearly with decreasing pu.



Appendix 4: Supplementary figures
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Figure S1. Information recovery from individual simulations. Conformation #1 of each series is shown at

far left. Panels to the right show unrecovered information (I), entropy (S) and log Z as a function of the number of

series terms included. Dot-dashed lines show the unrecovered information of Z °pt ysing optimized spot penalties
together with the given set of the series terms. Entropy of Z°P! is not shown.
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Figure S2. Accuracy of entropy as a proxy for unrecovered information. Distributions showing the
difference between entropy S, which is a blind estimate of unrecovered information, and actual unrecovered
information I in each of the 3 simulation scenarios considered, as a function of number of series terms. No spot
penalties were used for these results. Each distribution shown encompasses the S — I curves of all 100 simulated

reconstructions in one scenario.
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Figure S3. Accuracy of mapping probabilities. Binned mapping probabilities (x axis) versus the fraction of
true mappings in each bin (y axis), averaged over the various simulated experiments in each experimental scenario.
Grey shaded regions show the 30 range of uncertainty due to counting error.
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Figure S4. Partition function Z versus number of series terms. A. Relationship between log Z and the
number of series terms for each simulated scenario, calculated as a median average of the relationships found in
each of the 100 individual simulations in each scenario. B. Distributions of the difference between log Z calculated
using series 2 and series 1. The fact that this quantity is generally negative when some but not all series terms are
included reflects the fact that series 2 removes illegal conformations from Z faster than series 1.



