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1 Simulation details, sim2 data set

The sim2 data set consists of simulated sequencing reads from the human chromosome 1. The sequencing
parameters as well as underlying TPM values for the 15,677 transcripts in one of the two simulated conditions
were estimated using RSEM v1.2.21 [6] from the ERS326990 sample from the ArrayExpress data set with
accession number E MTAB 1733. We simulated three biological replicates from each of two conditions.

Three types of differential abundance were introduced between the two conditions, all assigned to genes
with estimated TPMs between 0.1 and 1000 in the reference data set (the “eligible” genes):

• DGE (differential gene expression) was introduced for 420 (11%) of the eligible genes. For these genes,
the overall gene expression (TPM) was modified, but the relative isoform abundances within the genes
were kept constant. The TPMs of the genes in condition 2 were obtained by shuffling the TPMs of the
genes in condition 1, in order to create a range of fold changes and keep the total TPM for differential
genes constant across samples. All genes with simulated DGE also show DTE (differential transcript
expression), but no DTU (differential transcript usage).

• DTE (differential transcript expression) was introduced for 422 (11%) of the eligible genes (selected
among genes with at least two isoforms). For each of these genes, 10% of the isoforms were selected
to be differential between the conditions, again by shuffling their TPMs from condition 1 to generate
TPMs in condition 2. In total, 528 transcripts were differentially expressed in these genes. All genes
with simulated DTE also show DGE (since the total TPM of the gene is modified) and DTU (since
the relative usage of the isoforms is modified). However, the overall fold changes of the DTE genes is
often lower than those of the DGE genes, since only a subset of the transcripts are affected.

• DTU (differential transcript usage) was introduced for 420 (11%) of the eligible genes (selected among
genes with at least two isoforms). For each of these genes, the total TPM was kept constant between
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the two conditions, but the relative isoform usage for a given gene with DTU in condition 2 was
sampled randomly among the relative isoform usages for all genes in the data set with the same
number of isoforms. All genes with simulated DTU also show DTE (since at least one isoform changes
expression), but no DGE.

Based on the expected number of reads for each transcript in each condition, we simulated three biological
replicates per condition from a negative binomial distribution, using a mean-dispersion relationship estimated
from large experimental data sets (see [9] for more information on how these estimates were generated). The
individual sample counts were then converted to TPMs and used as inputs to RSEM to simulate 10,000,000
paired-end reads of length 100 bp for each sample.

From the three types of differential genes in this data set, we can also define three sets of “truly differ-
ential” features:

• Differentially expressed transcripts

• Genes with between-condition differences in overall expression (the sum of the transcript TPMs)

• Genes with between-condition differences in at least one associated transcript

As we show in the manuscript, it is important to select the type of interest before choosing a quantification
and representation method, since different methods have unequal power to detect different types of signals.

2 Experimental data sets

In addition to the two simulated data sets, the results presented in this manuscripts are based on the following
four experimental data sets:

• Bottomly [1] This data set contains striatal tissue samples from 11 mice of the DBA/2J strain and 10
mice of the C57BL/6J strain. We downloaded the FASTQ files with sequencing reads from SRA (see
Supplementary File 4 for exact file names and URLs) and used the GRCm38.82 Ensembl annotation
for analysis.

• GSE64570 [11] We use a subset of the data, consisting of 3 replicates of wildtype zebrafish injected
with water, and 3 replicates of tlr5a morphants injected with Flagellin. We downloaded the FASTQ
files from SRA (see Supplementary File 5 for exact file names and URLs) and used the GRz10 Ensembl
annotation for analysis.

• GSE69244 [4] Also here, we use a subset of the data, consisting of 3 replicates of 10-month old SAMP8
mice given vehicle diet for 7 months and 3 replicates of 10-month old SAMP8 mice treated with the
Alzheimer’s disease drug candidate J147 for 7 months. We downloaded the FASTQ files from SRA (see
Supplementary File 6 for exact file names and URLs) and used the GRCm38.82 Ensembl annotation
for analysis.

• GSE72165 [3] This data set contains 3 samples each from the carotid body and the adrenal medulla
in mouse. We downloaded the FASTQ files from SRA (see Supplementary File 7 for exact file names
and URLs) and used the GRCm38.82 Ensembl annotation for analysis.

3 Quantification

Abundances were quantified in two different ways:

• Transcript abundance quantification with Salmon [8]. We generated a Salmon index from the cDNA
fasta file from Ensembl GRCh37.71 (for the human data sets), Ensembl GRCm38.82 (for the mouse
data sets) or Ensembl GRz10 (for the zebrafish data set), and used the quasi-alignment approach to
obtain TPM and count estimates for each transcript in each of the samples. In order to estimate the
variability in the estimates, we generated 30 bootstrap replicates.
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• Gene abundance quantification with featureCounts [7], after alignment of the reads to the genome
using STAR v2.4.2a [5]. The gene models were defined by the Ensembl GTF files from the same release
as the cDNA fasta files used for Salmon.

As an alternative to Salmon, we also applied kallisto [2] to obtain TPM and count estimates for transcripts.
The results were very similar to those obtained with salmon and are not shown in the manuscript.

Salmon returns estimates of both the TPM and the expected read count for each transcript. Gene-level
TPMs are defined as the sum of the TPM estimates of all associated transcripts. For comparison with
underlying (true) TPM values, we directly use the estimated (gene- or transcript-level) TPMs returned by
Salmon. For DGE analysis, as described in the main manuscript, we define two different “count” matrices
(denoted scaledTPM and simplesum) based on the Salmon results. Letting T̂t and Ĉt denote the estimated
TPM and read count for a transcript t, respectively, and denoting the set of all transcripts associated with
a gene g as Tg, we define the count equivalents for a gene g as follows:

• For scaledTPM,

Eg = 10−6 ·
∑
t∈Tg

T̂t ·
∑
t

Ĉt

• For simplesum,

Eg =
∑
t∈Tg

Ĉt

featureCounts does not return TPM estimates (neither for genes nor for transcripts), but only an observed
read count for each gene, which is used as input for the DGE analyses. For comparison with underlying
(true) TPM values, we estimate the “scaled FPKM” for each gene. Letting Xg denote the observed count for
gene g, and Lg denote the “union-exon length” of the gene (that is, the total number of base pairs covered
by the exons of the gene), we define

̂FPKMg = 109 · Xg

Lg ·
∑
gXg

,

and subsequently we define the scaled FPKM value by

̂FPKM
s

g = 106 ·
̂FPKMg∑

g
̂FPKMg

.

4 Deriving offsets from transcript lengths and abundances

Here we motivate using the average transcript length as an offset for performing differential expression on
summarized fragment counts from all transcripts of a gene. We use the notation of the Methods Supplement
of the Cuffdiff2 paper [10]. Suppose a single gene G with transcripts indexed by t, two samples a and b with
observed fragment counts for the gene G given by Xa and Xb, and underlying, unobserved fragment counts
from each transcript t given by Xta and Xtb. The effective length of transcript t, the number of positions
along the transcript where a fragment can align, is given by l̄t. For notational simplicity, we suppose this is
the same for samples, but the following holds for sample-specific effective lengths as well. The true expression
of transcript t is given by ρta and ρtb for the two samples.

The fold change in expression for the gene is given by ∆ρG . If we knew the true fragment counts for each
transcript, we could estimate this using the sum of length corrected counts for all transcripts for sample a
and dividing by the same quantity for sample b.

∆̂ρG =

∑
tXta/l̄t∑
tXtb/l̄t

(1)

We define θta as the ratio of total expression for gene G from transcript t, such that
∑
t θta = 1

θta =
ρta∑
t′ ρt′a
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The expected number of fragments coming from transcript t is then given by the following product:

E(Xta) = Xa
θta l̄t∑
t′ θt′a l̄t′

We now return to the numerator of Eq. 1. The expected value of this quantity can be broken down as
follows:

E

(∑
t

Xta/l̄t

)
=
∑
t

E(Xta)/l̄t

=
∑
t

Xa
θta∑
t′ θt′a l̄t′

=
Xa∑
t′ θt′a l̄t′

∑
t

θta

=
Xa∑
t′ θt′a l̄t′

We can therefore estimate ∆ρG using expected values for the numerator and denominator:

E
(∑

tXta/l̄t
)

E
(∑

tXtb/l̄t
) =

Xa/
∑
t′ θt′a l̄t′

Xb/
∑
t′ θt′b l̄t′

This final line shows that the ratio of summarized fragment counts for the gene can be corrected for
bias due to changes in transcript usage by using the average transcript length for each sample, where the
average is weighted by abundances θta. As we do not have access to the true abundances of each transcript,
estimates of transcript abundance θ̂ta are used.

5 Generation of incomplete transcriptome annotation

To generate the incomplete transcriptome annotation used to simulate incomplete knowledge about the
transcriptome (see Figure 1a), we first randomly selected 20% of the transcripts included in the cDNA fasta
file downloaded from Ensembl (restricted to transcripts from chromosome 1 for sim2). A new, incomplete
transcriptome fasta file was generated by excluding the entries for the selected transcripts. This fasta file
was then used to generate the incomplete index for Salmon. In addition, we excluded all entries from the
Ensembl GTF file that were annotated with a transcript ID from the selected list. Note that an exon can
be included with multiple entries in the Ensembl GTF file if it is part of multiple transcripts, and only the
entry corresponding to the excluded transcript was removed. Thus, exonic regions are still included in the
GTF file as long as any of the transcripts they are part of is retained. The filtered GTF file was used for
counting with featureCounts. The precise R code to generate the incomplete annotation files is included in
Dataset 2.

6 Accuracy of abundance estimates among paralogous genes

The two types of abundance quantification pursued in this study (alignment-based with gene-level read count-
ing, alignment-free with transcript-level abundance estimation) can be expected to behave differently, e.g., in
their handling of multi-mapping reads. Depending on the settings, such reads are often excluded from tradi-
tional gene counting, whereas transcript-level abundance estimation procedures are designed to portion them
out appropriately across the matching transcripts. Since this difference may be clearest for sets of similar
genes, we analyzed the accuracy of gene-level abundance estimates from Salmon and STAR+featureCounts
for several collections of paralogous genes in the simulated data sets. We considered only collections contain-
ing at least 10 genes (5 for the sim2 simulation), at least half of which were truly expressed at a non-trivial
level (true TPM > 5). For the sim2 data set, we considered only subcollections consisting of genes on

4



chromosome 1. Overall, Salmon showed a higher correlation between the true and observed values for the
groups of paralogous genes (a few examples are shown in Supplementary Figures 1-3). However, the differ-
ence between the approaches was not strikingly larger among paralogous genes than for the set of all genes
(see Dataset 1).
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Supplementary Figure 1: (sim1) Accuracy of gene-level abundance estimates from Salmon and feature-
Counts for paralogs of the ENSG00000022267 gene.
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Supplementary Figure 2: (sim1) Accuracy of gene-level abundance estimates from Salmon and feature-
Counts for paralogs of the ENSG00000047365 gene.
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Supplementary Figure 3: (sim1) Accuracy of gene-level abundance estimates from Salmon and feature-
Counts for paralogs of the ENSG00000090612 gene.
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7 Supplementary Figures

Supplementary Figure 4: Accuracy of transcript and gene TPM estimates from Salmon and feature-
Counts, restricted to features with non-zero true and estimated TPMs (sim2). Spearman correlations are
indicated in each panel.
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Supplementary Figure 5: Accuracy of transcript and gene TPM estimates from Salmon and featureCounts
(sim1). Top: all features. Bottom: restricted to features with non-zero true and estimated TPMs. Spearman
correlations are indicated in each panel.
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Supplementary Figure 6: Distribution of coefficients of variation for gene and transcript abundance
estimates from Salmon (sim1), estimated across 30 bootstrap replicates of one of the simulated samples
(sample1).
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Supplementary Figure 7: Distribution of coefficients of variation for gene and transcript abundance
estimates from Salmon (Bottomly), estimated across 30 bootstrap replicates of the SRR099223 sample.
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Supplementary Figure 8: Distribution of the fraction of differentially used transcripts that were found for
the genes correctly found to harbor DTE, using edgeR (sim2). While for many of the true positive genes,
all of the truly differential transcripts were detected individually as well, this is not true for all the genes,
which explains the difference in power between transcript-level DTE and gene-level-summarized DTE that
is seen in Figure 2 of the main text.
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Supplementary Figure 9: Comparison of the ability of different approaches to detect DTE, using edgeR
(sim2). Thus, here, a gene is considered truly differential if any of its corresponding transcripts is truly
differentially expressed between conditions. Gene-level quantification followed by differential analysis (i.e.,
DGE approaches) is less powerful than transcript-level quantification and statistical testing aggregated on
gene-level (i.e., DTE approach). This highlights the importance of appropriate specification of the ques-
tion of interest before starting an analysis. As in the main text, DGE is performed on three gene-level
count matrices: one generated by featureCounts, one obtained by scaling gene-level aggregated TPM esti-
mates (scaledTPM salmon) and one obtained by summing transcript-level counts on the gene level (simple-
sum salmon). Moreover, for the featureCounts and simplesum salmon matrices, DGE is performed using a
standard pipeline as well as including offsets calculated from average transcript lengths (avetxl). The DTE
analysis was performed on the transcript-level counts obtained by Salmon, and p-values were then aggregated
on the gene level.
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Supplementary Figure 10: Correlation among counts obtained with different approaches in one of the
simulated samples (sampleA1) from the sim2 data set. Top: all genes. Bottom: only genes with non-zero
counts with all methods. For visualization and correlation calculations, the counts were log2-transformed
after adding a pseudo-count of 1.
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Supplementary Figure 11: Correlation among counts obtained with different approaches in one of the
simulated samples (sample1) from the sim1 data set. Top: all genes. Bottom: only genes with non-zero
counts with all methods. For visualization and correlation calculations, the counts were log2-transformed
after adding a pseudo-count of 1.
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Supplementary Figure 12: Correlation among counts obtained with different approaches in the
SRR099223 sample from the Bottomly data set. Top: all genes. Bottom: only genes with non-zero counts
with all methods. For visualization and correlation calculations, the counts were log2-transformed after
adding a pseudo-count of 1. featureCountsMM is similar to featureCounts, but includes multi-mapping
reads by distributing them evenly between the mapping locations.
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Supplementary Figure 13: Distribution of nominal p-values obtained by performing DGE using edgeR
(top) and DESeq2 (bottom) on gene-level count matrices obtained with different approaches (sim2).
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Supplementary Figure 14: Distribution of nominal p-values obtained by performing DGE using edgeR
(top) and DESeq2 (bottom) on gene-level count matrices obtained with different approaches (sim1).
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Supplementary Figure 15: Distribution of nominal p-values obtained by performing DGE using edgeR
(top) and DESeq2 (bottom) on gene-level count matrices obtained with different approaches (Bottomly).
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Supplementary Figure 16: Mean-dispersion relationship obtained from edgeR (top) and DESeq2 (bottom)
applied to gene-level count matrices obtained with different approaches (sim2).
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Supplementary Figure 17: Mean-dispersion relationship obtained from edgeR (top) and DESeq2 (bottom)
applied to gene-level count matrices obtained with different approaches (sim1).
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Supplementary Figure 18: Mean-dispersion relationship obtained from edgeR (top) and DESeq2 (bottom)
applied to gene-level count matrices obtained with different approaches (Bottomly).

21



●● ●
●● ●●

●●● ●● ●●●

●● ●
●●

●●
●●● ●● ●

●●

●●● ●●
●●● ●● ●●● ●●

●●● ●●
●●● ●●

●●● ●●

no differential isoform usage

differential isoform usage

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.
01

0.
05 0.

1
0.

1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

FDR

T
P

R

●●

●●

●●

●●

●●featureCounts

featureCounts_avetxl

scaledTPM_salmon

simplesum_salmon

simplesum_salmon_avetxl

Supplementary Figure 19: Stratification of differential gene expression detection performance by the
presence of differential isoform usage, using DESeq2 (sim2).
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Supplementary Figure 20: Overlaps among collections of significant genes found with edgeR (top) and
DESeq2 (bottom) for three different experimental RNA-seq data sets, using three different counting pipelines.
In these data sets, the majority of the significant genes are found with all counting methods, suggesting that
for many real data sets, simple gene counting produces overall similar results as methods accounting for
transcript-level expression.
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Supplementary Figure 21: Accuracy of overall gene log-fold change estimates based on results from edgeR,
using different count matrices (sim2). Only genes with non-zero true log-fold changes are considered.

Supplementary Table 1: Spearman correlations quantifying the accuracy of the overall gene log-fold
change estimates based on different count matrices (sim2), shown in Supplementary Figure 21.

featureCounts featureCounts avetxl scaledTPM salmon simplesum salmon simplesum salmon avetxl

No DTU 0.834 0.839 0.816 0.823 0.828

DTU 0.725 0.788 0.796 0.735 0.783

24



Supplementary Figure 22: Correlations between estimated log2-fold changes obtained with the
scaledTPM and simplesum count matrices, using edgeR. The color indicates whether or not the gene
is expressed in only one condition.
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Supplementary Figure 23: Correlations between estimated log2-fold changes obtained with the
scaledTPM and simplesum count matrices, using DESeq2. The color indicates whether or not the gene
is expressed in only one condition.
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