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1 Calculating the degree of dispersion moderation

We propose a heuristic strategy to define the moderation level specified as W in Equations 10 and
11 in the main text.

To estimate the concentration parameter v, we employ the grid approach from edgeR [I]. For
each gene, adjusted profile likelihood is calculated for a defined set of ~, values, then the cubic
spline function is fitted and optimized very quickly with maximizeInterpolant function. The set of
~v, values spans the parameter space of potential concentration estimates creating a grid of values
around the common concentration equally dividing a user defined range (Figure [S21]A). Figure
shows a profile likelihood, calculated at the grid points, for a gene that has a clear maximum within
the specified v; range. Figure [S2I|C, on the other hand, shows an example of a gene with profile
likelihood that cannot be optimized because it is a monotonically increasing function within the grid.
In this case, the boundary grid value is used as a concentration estimate. Such behavior may take
place due to the instability of likelihood function based on small number of observations. In the DS
analyses considered here, there are many instances of such genes (see Figure )

We use these boundary genes to estimate the minimal shrinkage W that should be applied in the
weighted likelihood so that their concentration estimates become equal to the common concentration
estimate. For that, we calculate the likelihood span, defined as a difference between the maximum
and minimum likelihood value obtained on a grid, for the boundary genes and for the common
likelihood (Figures , and , ) Gene-wise likelihood APL, in Equation 10 will be
dominated by common likelihood when the span of the latter is larger than the span of the former,
and the minimal level at which it happens could be approximated as a ratio between the spans of
gene likelihood and common likelihood, defined here as prior N. Thus, prior N specifies the minimal
shrinkage W for each individual boundary gene. For the moderation to trended dispersion, prior N is
calculated similarly, using the trended likelihood instead of the common one. As a moderation level
that is applied to all the genes, we decided to use one weight W for all the genes equal to the median
of prior N in the moderation to common dispersion, and in the moderation to trended dispersion, we
use gene-wise weights W defined as a loess fitting to prior N as a function of mean gene expression

(Figures and [S23)).

The number of boundary genes differs substantially between the analyses of transcript and exon
counts, with many more cases on the boundary in the latter (Figures , and , )
This indicates that there is much more instability in the likelihoods based on exon counts and
suggesting that the DM model does not fit them well.

To assess whether our approach of moderation level W calculation is optimal, i.e., leads to im-
proved dispersion estimation and better control of FP rate, we performed the DS analyses using
different moderation levels and the one estimated by DRIMSeq on the data simulated from the DM
model described in Section 3] In Figures[S7]- it is shown that the estimated shrinkage levels are
very close to the one that provide best dispersion estimates and best control of FP rate.

2 P-value adjustment with permutations in sQTL analysis

The null distribution of gene-SNP associations is assessed from the analyses of permuted data.
Namely, samples in transcript count table are shuffied while the genotype data and gene-SNP match-
ing stay unchanged so that the correlation structure between fitted models is unaffected. Full and
null models are fitted to such newly obtained data and p-values from the LR test are generated. This
procedure is repeated a user-defined number of times (default: 10). P-values from each permutation
cycle are pooled together (null p-values) and used for the adjustment of the nominal p-values. The
(new) estimated p-value is equal to the fraction of null p-values that are more significant than the
nominal p-value. Such permutation adjusted p-values are then corrected for multiple testing with



the Benjamini-Hochberg method using the p.adjust R function.

3 Details on simulations from the Dirichlet-multinomial model

In these simulations, data that corresponds to a two-group comparison with no DS was generated
from the DM distribution with identical parameters in both groups.

There are slight variations between our simulations depending on their specific purpose.

The first set of simulations aimed to compare performance of the DM model using different
dispersion estimates (Figures [S1|- . Fixed feature proportions were used in the DM distribution
for all the genes. In the first case, they were the same for all the features (uniform), and in the
second case, they were estimated, separately for genes with a given number of features, as a median
of (sorted) proportions observed in the kallisto counts from Kim et al. data (kim kallisto).

In the second simulations, the goal was to see the performance of the DM model on data with
different number of features and two scenarios for proportion distributions: uniform and decaying. In
the uniform distribution, each feature had a proportion equal to 1/total number of features. In the
decaying distribution, each following feature had a proportion of one-half smaller than the previous
one, and then normalized according to the number of features (Figures and . Both of these
simulations were repeated 50 times for 1000 genes with the same expression per gene and sample.

With the third type of simulations, we wanted to assess the level of dispersion moderation (Figures
from|S7|to . They intend to better resemble a real dataset. Thus, genes have different expression,
dispersion and proportions that were estimated from kallisto and HTSeq counts from the Kim et al.
and Brooks et al. datasets. Gene expression was simulated using the negative-binomial distribution
with mean p generated from the log-normal distribution fitted to the observed mean gene expression
and with common dispersion # estimated by edgeR. Feature proportions for the DM distribution were
randomly selected from the exact proportions observed for genes in one sample, and the concentration
parameters v, were generated from the log-normal distribution fitted to the observed concentrations.
The latest simulation instance was repeated 25 times for 5000 genes each.

In these analyses, the ML estimates of concentration were obtained with the dirmult package
version 0.1.3-4.

4 Details on simulations that mimic real RNA-seq data

Data for this comparison was obtained from the simulations by Soneson et al. [2], where all the
details on data generation and accessibility are available. It includes: HTSeq raw (htseq) and pre-
filtered (htseqprefiltered5) counts, kallisto raw (kallisto), filtered (kallistofiltered5) and pre-filtered
(kallistoprefiltered5) counts and the DEXSeq results for both Drosophila melanogaster and Homo
sapiens.

The DRIMSeq analyses were performed using Cox-Reid adjustment and common dispersion
(drimseq common) or gene-wise dispersion estimation without moderation (drimseq genewise grid none),
with moderation to common (drimseq genewise grid common) and to trended dispersion (drim-
seq_genewise grid trended).

5 Details on the differential splicing analyses

For both of the analyses, the exonic bin counts were obtained with python scripts from DEXSeq
version 1.10.8 (Bioconductor release 2.14) which call HT'Seq. For the generation of flattened GTF
file, -r no option was used, which disables aggregation of overlapping genes.



The transcript quantification was obtained with kallisto version 0.42.1.

We also applied our DS analysis to filtered transcript counts (kallistofiltered5), where only tran-
scripts with expression proportions higher than 5% in at least one sample were kept, and to exonic
counts (htseqprefiltered5) obtained as above with HTSeq, but using a GTF file where the same
transcripts as for kallistofilteredb are kept (pre-filtering approach proposed by Soneson et al. [2]).

The differential splicing analyses were done with DRIMSeq and DEXSeq version 1.10.8 for the
comparisons defined in Table for pasilla data and in Table for adenocarcinoma data. There
are two types of comparisons performed. First, the analyses that detect DS between the condition
groups (model full) and second, the mock analyses, which are a comparison between the replicates of
the same condition (model null). The latter aim to investigate the specificity of each method. In the
mock analyses, no DS should be detected and any DS gene is treated as a FP. Thus, high number of
DS genes may be interpreted as low specificity.

We used three different approaches of gene-wise dispersion estimation in DRIMSeq: without mod-
eration (drimseq genewise grid none) and with moderation to common (drimseq genewise grid common
and to trended dispersion (drimseq genewise grid trended). We did not consider common disper-
sion, since its performance in simulations was much worse than for the gene-wise approaches. In all
situations, Cox-Reid adjustment was used. DEXSeq exon p-values were summarized into gene-level
adjusted p-values by applying the perGeneQValue function.

5.1 Pasilla dataset

The data (in SRA format) was downloaded from the NCBI’s Gene Expression Omnibus (GEO) under
the accession number GSE185041] (samples from GSM461176 to GSM461182). It was converted into
FASTQ format using the fastq-dump command from the SRA toolkif’] The reads were aligned to
Drosophila melanogaster Ensembl 70 reference genome with TopHat version v2.0.14 where the bowtie
index was generated with Bowtie 2 version 2.1.0. The reference files including;:

e genome Drosophila_melanogaster.BDGP5.70.dna.toplevel.fa. gzﬂ,
e transcriptome Drosophila_melanogaster.BDGP5.70.cdna.all.fa. gzﬂ

e gene model Drosophila_melanogaster.BDGP5.70.gtf . g

were downloaded from the Ensembl FTP sites. For all the details of pasilla data pre-processing, see
the vignette of PasillaTranscriptExpr [3] package available on Bioconductmﬂ

For the validation of DS analysis results, we used the 16 genes that were validated by Brooks et
al. [4] with the RT-PCR for the alternative usage of exons. One of their validated cases consisted of
two genes sesB and Ant2 so we decided to consider them separately.

5.2 Adenocarcinoma dataset

We downloaded the TopHat-mapped reads (in BAM format) from the InSilico DBIZ] and used them
to compute the HT'Seq counts. The FASTQ files needed for kallisto were generated with fastq-dump
from the SRA files corresponding to samples from GSM927308 to GSM927319 downloaded from
GEO under the accession number GSE37764F] We used as a reference the Homo sapiens Ensembl 71

"http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18508
2http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
3http://ftp.ensembl.org/pub/release-70/fasta/drosophila_melanogaster/dna/
‘http://ftp.ensembl.org/pub/release-70/fasta/drosophila_melanogaster/cdna/
Shttp://ftp.ensembl.org/pub/release-70/gtf/drosophila_melanogaster
Shttp://bioconductor.org/packages/PasillaTranscriptExpr
"https://insilicodb.com
Shttps://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37764
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release. The reference files including;:
e genome Homo_sapiens.GRCh37.71.dna.toplevel. fa.gzﬂ
e transcriptome Homo_sapiens.GRCh37.71.cdna.all.fa. ngG],
e gene model Homo_sapiens.GRCh37.71.gtf.g4 ]|

were downloaded from the Ensembl FTP sites.

6 Details on the tuQTL analyses

For the tuQTL analyses, expected transcript counts, obtained with Flux Capacitor, and genotype
data were downloaded from the GEUVADIS project websitd’? The gene annotation™| Release 12
(GRCh37) used in GEUVADIS analyses was download from GENCODHY]|

Originally, the genotype data is stored in the VCF files. For the analyses with DRIMSeq and
sQTLseekeR, we kept only the bi-allelic SNPs with a minor allele present in at least 5 samples and at
least two alleles present in a population, and converted the genotype information into 0 for ref/ref,
1 for ref/not ref, 2 for not ref/not ref, -1 or NA for missing values. Newly encoded genotypes were
saved as text files. For all the details of GEUVAIDS data pre-processing, see the vignette of the
Geuvadis TranscriptExpr [5] package available on BioconductorE].

The tuQTL analyses were performed with DRIMSeq using the Cox-Reid adjusted gene-wise dis-
persion without moderation and sQTLseekeR version 2.1 installed from GitHub['| with default pa-
rameters in sqtl.seeker function. For both methods, transcript quantification was filtered to the
protein coding genes that have at least 10 counts in 70 or more samples and at least two transcript
left after the transcript filtering, which keeps those that have at least 10 counts and proportion of
at least 5% in 5 or more samples. sqtl.seeker function returns non adjusted p-values. Thus, we
applied to them the Benjamini and Hochberg correction for multiple testing with p.adjust function
(the same as in DRIMSeq).

We compared the tuQTLs detected by DRIMSeq and sQ)TLseckeR for CEU and YRI populations

with the associations discovered in other studies which include:

e transcript ratio QTLs (trQTLs) obtained in the GEUVADIS project [6] from the analyses of
the EURE (373 samples) and the YR]F_gI (89 samples) populations. They provide a list of all the
trQTLs and the best per gene associations (FDR = 0.05) using a cis-window of 1Mb. Notice
that many of their gene-SNP pairs were not tested in our analyses since we used a cis-window
of 5Kb;

e percent spliced in QTLs (psiQTLs) detected by GLiMMPs [7] in the analysis of the CEU (41
samples) population data from Cheung et al. [8]. They provide a list of psiQTLs (FDR = 0.1)
that are closest to the target exon splice sit

Ynttp://ftp.ensembl.org/pub/release-71/fasta/homo_sapiens/dna/
Ohttp://ftp.ensembl.org/pub/release-71/fasta/homo_sapiens/cdna/
Uhttp://ftp.ensembl.org/pub/release-71/gtf/homo_sapiens/
2http://www.ebi.ac.uk/Tools/geuvadis-das/
13gencode .v12.annotation.gtf.gz
Yhttp: //www.gencodegenes.org/releases/12.html
5http://bioconductor.org/packages/GeuvadisTranscriptExpr
https://github.com/jmonlong/sQTLseekeR
I"EUR373.trratio.cis. FDR5.all.rs137.txt and EUR373.trratio.cis. FDR5.best.rs137.txt
18YRI89.trratio.cis. FDR5.all.rs137.txt and YRIS89.trratio.cis. FDR5.best.rs137.txt
9Supplementary table S1 in [7] (13059 2013 3131 MOESM2 ESM.xls)
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Additionally, we consider separately the 26 psiQTLs that were validated by RT-PCRPY and the 10
psiQTLs that were linked to GWAS signal (Table 1 in [7]). The numbers of rediscovered associations
are shown in Tables [S4] and [S5] Figures and depict the data and DM estimates for the two
PCR validated sQTLs that were detected by DRIMSeq in CEU population.

7 List of abbreviations used in the Supplementary Figures
e DM - Dirichlet-multinomial
e FP - false positive
e TPR - true positive rate
e FDR - false discovery rate
e ML - maximum likelihood
e PL - profile likelihood
e CR - Cox-Reid
e DS - differential splicing

In simulations from the DM model (Figures [S1] - [S12):

e 1n - number of samples in a condition group, for example, n=3 means that a comparison of 3
versus 3 samples was conducted

e m - total gene expression; corresponds to the number of trials in the Dirichlet-multinomial
distribution

e ¢ - number of gene features, for example, transcripts; corresponds to the number of categories
in the Dirichlet-multinomial distribution

e kim - used when referring to the adenocarcinoma data from Kim et al.

e brooks - used when referring to the pasilla data from Brooks et al.
In simulations that mimic real RNA-seq data (Figures 524)):

e node, withde - simulations without and with differential gene expression, respectively
e nonull - simulations with differential splicing
e 1 - total number of genes

e nds - number of differentially spliced genes

20Supplementary table S3 in [7] (13059 2013 3131 MOESM4 ESM.xls)
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Figure S1: Simulations from the DM distribution where the aim was to compare performance of the
DM model using different dispersion estimates. Data was simulated for two-group null comparison
(size of each group equal to n = 3 or n = 12) with two dispersion scenarios. In the first one, all
genes have the same (common) concentration, in the second one, each gene has a different (genewise)
concentration. Genes have ¢ = 3 or ¢ = 10 features with uniform proportions or decaying proportions
estimated based on kallisto counts of data from Kim et al., gene expression equal to m = 1000. For
each of the scenarios, common, gene-wise, without and with moderation to common concentration
was estimated. Concentration estimates were obtained with maximum likelihood using the dirmult
package (ML-dirmult), the raw profile likelihood (PL) and the Cox-Reid adjusted profile likelihood
(CR). The Y-axis shows the median absolute error of concentration 7, estimates.
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Figure S2: Simulations from the DM distribution where the aim was to compare performance of
the DM model using different dispersion estimates. Median raw error of concentration 7, estimates
are shown.
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Figure S3: Simulations from the DM distribution where the aim was to compare performance of the
DM model using different dispersion estimates. False positive (FP) rate for the p-value threshold of
0.05 of the null two-group comparisons based on the likelihood ratio (LR) statistics. Additionally, the
FP rates when true concentration estimates were used for the inference are shown as gray boxplots.
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Figure S4: Simulations from the DM distribution where the aim was to compare performance
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comparisons based on the likelihood ratio (LR) statistics.

11



Decaying proportions Uniform proportions

n=3 n=10 n=3 n=10
4
3.0-

+ )
w3 S5
IS 3 £ 3
5 L g L
u“ o =20 o

o o
a2 S o S
- —
: seosbbbbl  T000R444T Seeess
1 1.0

09 8 7 6 5 4 3 109 8 7 6 5 4 3 09 87 65 4 3 109 87 65 4 3
nr_features nr_features
Emoderation_none Emoderation_none
C n=10 _ D n=10
oL :
20- Pt 20- IR
s : i 8 ; | P
7 i 3 b i 3
2 I, 2 g,
2 = 2 =
S 10- 8 S 10- 8
-] -]
< . < .
109 8 7 6 5 4 10 9 8 7 6 5 4 3 1089 8 7 6 5 4 10 9 8 7 6 5 4 3
nr_ features nr_} features
&moderation_none &moderation_none
E n=3 n=10 n=3 n=10
4 .8
+ ! 4 * + + '
2 0 L+ + * 3 2 3
(] * - T 1l [} 1l
c = c =
g = 5] < 3
3 * = - S 82 S
= =
s SEREEEY
_8 G

09 8 7 6 5 4 3 109 8 7 6 5 4 3
nr_features
Emoderation_none

0 9 8 765 4 3 109 8 7 6 5 4 3
nr_features
B moderation_none

Figure S5: Simulations from the DM distribution where the aim was to compare performance of the
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Figure S8: Simulations from the DM distribution where the aim was to assess the dispersion
moderation level. Median absolute error of concentration estimates.
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Figure S9: Simulations from the DM distribution where the aim was to assess the dispersion
moderation level. Median error of concentration estimates.
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Figure S10: Simulations from the DM distribution where the aim was to assess the dispersion
moderation level. FP rate obtained when conducting the DS inference with moderated dispersion.
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Figure S11: Simulations from the DM distribution where the aim was to assess the dispersion mod-
eration level. Distributions of p-values obtained when conducting the DS inference with moderated

dispersion.
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Figure S12: Simulations from the DM distribution where the aim was to assess the dispersion
moderation level. Automatically estimated moderation levels. In order to shrunk the boundary
concentration estimates, more moderation is needed for the exonic (HTSeq) than transcript (kallisto)
counts. As the sample size increases, less moderation is required.
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Figure S13: Simulations from the DM distribution where the aim was to assess the dispersion
moderation level. FP rate corresponding to the automatically estimated moderation levels.
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Figure S15: True positive rate (TPR) versus achieved false discovery rate (FDR) for three
FDR thresholds (0.01, 0.05 and 0.1) obtained by DEXSeq and DRIMSeq with different disper-
sion estimation strategies: common dispersion and genewise dispersion with no moderation (ge-
newise grid mnone), moderation to common dispersion (genewise grid common) and moderation
to trended dispersion (genewise grid trended). Results presented for simulations of Drosophila
melanogaster and Homo sapiens, both with no differential gene expression (node), and Homo sapiens
with differential gene expression (withde). All cases with differential splicing (nonull). Transcript
counts from kallisto, exonic counts from HTSeq, pre-filtered counts (kallistoprefiltered5, htseqpre-
filtered5) and simply filtered kallisto counts (kallistofiltered5) were used. When the achieved FDR is
smaller than the threshold, circles are filled with the corresponding color, otherwise, they are white.
There is not too much difference between kallisto filtered or pre-filtered counts, indicating that here
it was not necessary to recalculate the transcript abundance based on the reduced GTF. Method
performance is almost identical for H. sapiens with and without DGE, showing that both approaches
accurately account for gene expression.
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Figure S16: Concordance between DEXSeq and different versions of DRIMSeq for the top significant
DS genes detected by each of the methods. "X" indicates the number of genes detected as DS for
the FDR of 0.05. Blue "X" corresponds to DEXSeq.
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Figure S17: TPR and FDR stratified by the number of isoforms for the analysis based on kallisto

filtered counts.

The ability to control the FDR at an imposed level and the TPR depend on the

number of isoforms of the genes. The FDR control for genes with many isoforms is worse and TPR
is smaller than that for genes with few isoforms. Number of isoforms in the brackets (e.g., [1,3) for
Drosophila), the total number of genes (n) and the number of DS genes (nds) in each category are
indicated in the panel headers.
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Figure S18: Numbers of DS genes detected by DEXSeq and DRIMSeq (with gene-wise dispersion
moderated to the trend) at the FDR = 0.05 based on the kallisto filtered counts. Truth corresponds

to the genes with imposed DTU.
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Figure S19: Results of the Drosophila (no DGE) analyses with DRIMSeq. Upper panels - kallisto
counts, bottom panels - HTSeq counts. A, B, C, E, F, G: Concentration versus mean gene expression
plots using different dispersion estimation approaches. Dashed line corresponds to the common
dispersion estimate. Additionally, when no moderation is used, a smoothed curve is fitted. The
fitting clearly indicates that there is a dispersion-mean trend present in the data. D, H: P-value
histograms for trended dispersion used in the inference. For kallisto counts, the p-value distribution
is more uniform with a sharp peak close to zero, which suggests a better fit of the DM model to
transcript counts than to exonic counts.
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Figure S20: Results of the Homo sapiens (no DGE) analyses with DRIMSeq. Upper panels -
kallisto counts, bottom panels - HTSeq counts. A, B, C, E, F, G: Concentration versus mean gene
expression plots using different dispersion estimation approaches. Dashed line corresponds to the
common dispersion estimate. Additionally, when no moderation is used, a smoothed curve is fitted.
The fitting clearly indicates that there is a dispersion-mean trend present in the data. D, H: P-value
histograms for trended dispersion used in the inference. For kallisto counts, the p-value distribution
is more uniform with a sharp peak close to zero, which suggests a better fit of the DM model to

transcript counts than to exonic counts.
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Figure S21: A: Concentration versus mean gene expression with marked grid points (gray dashed
lines). B, C: Profile likelihood (y-axis) along the grid points (x-axis). B: Example of a gene with
profile likelihood that can be maximized within the grid. C: Example of a gene with profile likelihood
that is a monotone increasing function over the grid and the concentration estimate is equal to the
boundary value. Data from the Drosophila (no DGE) analysis based on kallisto filtered counts.
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Kallisto counts
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Figure S22: Results for Drosophila (no DGE). A, D: Profile likelihood span versus mean gene
expression. A likelihood span is defined as difference between the maximum and minimum value of a
likelihood calculated over the grid of potential concentration estimates. Black dots indicate span for
the grid boundary genes, gray points the rest of the genes. Red dashed line corresponds to a span
of common likelihood and brow points to the trended likelihood. B, C, E, F: priorN versus mean
gene expression, where priorN is a ratio between the likelihood span of boundary genes and the span
of common likelihood (B, E) or trended likelihood (C, F). Dashed line corresponds to the median
of observed priorN, which is used as a moderation level W for shrinkage to the common dispersion,
blue line is a loess fitting to the data and is used as a moderation level in shrinkage to the trended
dispersion. There are many more boundary genes when exonic counts are used, which can suggest
that the DM model does not explain this type of data so well.
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Kallisto counts
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Figure S23: Results for Homo sapiens (no DGE). A, D: Profile likelihood span versus mean gene
expression. A likelihood span is defined as difference between the maximum and minimum value of a
likelihood calculated over the grid of potential concentration estimates. Black dots indicate span for
the grid boundary genes, gray points the rest of the genes. Red dashed line corresponds to a span
of common likelihood and brow points to the trended likelihood. B, C, E, F: priorN versus mean
gene expression, where priorN is a ratio between the likelihood span of boundary genes and the span
of common likelihood (B, E) or trended likelihood (C, F). Dashed line corresponds to the median
of observed priorN, which is used as a moderation level W for shrinkage to the common dispersion,
blue line is a loess fitting to the data and is used as a moderation level in shrinkage to the trended
dispersion. There are many more boundary genes when exonic counts are used, which can suggest
that the DM model does not explain this type of data so well.
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Figure S24: TPR versus FDR for DEXSeq and DRIMSeq with gene-wise dispersion moderated to
the trend with different filtering approaches applied to kallisto and HTSeq counts. filterQ - corre-
sponds to no filtering, i.e., all features (exonic bins or transcripts) with at least one count in one
sample are kept. filterl - filters to genes with at least 10 counts in all the 6 samples and features with
with at least 10 counts in 3 and more samples. filter2 - keeps all the features that are expressed at the
ratio of 5% in at least one sample. filter3 - additionally to the conditions from filterl, requires that a
feature is expressed at the ratio of at least 0.5% in 3 and more samples. prefilter5 - is a pre-filtering
approach proposed by Soneson et al., where only the transcripts with expression ratio of at least 5%
in 1 and more samples, based on kallisto counts, are kept in the annotation. Such reduced annotation
is then used to re-compute the HT'Seq and kallisto counts. Filtering approaches proposed here affect
exon results with different degree, while transcript results based on filtered data are very similar.
For transcript counts, applying filtering increases substantially the power of DRIMSeq but the FDR
is also elevated, for DEXSeq filtering mostly reduces its FDR and the TPR stays at the very similar
level. In the analyses of exonic counts, pre-filtering approach is the most effective one it increases
the TPR and decreases the FDR (the latter especially for DEXSeq).
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Figure S25: MDS plots based on top 500 most variable genes show the dissimilarity between samples
from pasilla and adenocarcinoma studies. BVC - biological coefficient of variation. Sample labels are
colored by condition. For the pasilla data, sample labels contain sample IDs, experimental condition
(CTL - control, KD - knock-down of pasilla factor) and the type of sequencing (PA - paired-end, SI
- single-end). There is a clear separation between control and knock-down samples, but also, paired-
end and single-end samples create clusters that are very distinct within each condition, indicating
that the library layout has a strong impact on the measured gene expression. For the adenocarcinoma
data, sample labels correspond to the patient IDs and the tissue types that samples were extracted
from. Samples group by condition. Nevertheless, there is a lot of heterogeneity among the individual
patients - the range of the y-axis, that corresponds to the differences between the patients, is almost as
wide as the range of x-axis, that represents the differences between the conditions. The order (from
top to bottom) of patients in normal and tumor clusters is very similar. These two observations
suggest that the differences between patients may be stronger than between the tissue type.
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Pasilla data
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Figure S26: Number of genes detected as differentially spliced by DEXSeq and DRIMSeq with
different dispersion methods (gene-wise estimates without moderation and with moderation to the
common and to the trended dispersion) in pasilla and adenocarcinoma data. For the pasilla data,
model full corresponds to the comparison of 4 control samples versus 3 knock-down. Model full
paired is a comparison of 2 control versus 2 knock-down paired-end samples. Model full 2 is as model
full but additionally accounts for the library layout. Null models compare different combinations of
control samples (2 versus 2). For the adenocarcinoma data, full model corresponds to the two-group
comparison of 6 control and 6 cancer samples. Model full 2 accounts for the fact that samples are
paired. Null models are the two-group comparisons of different combinations of 3 versus 3 samples
that come from the same condition: normal or tumor tissue. In the null comparisons, one expects
to find no differential splicing since replicates from the same condition are compared. Currently,
DRIMSeq does not support models with multiple covariates. The analyses were performed on HTSeq
and kallisto counts estimated based on the full transcript catalog and the pre-filtered annotation
where the lowly expressed transcripts were removed. Intensive colors specify the number of DS genes
detected by DRIMSeq that overlap with DEXSeq. Transparent colors represent genes that are unique

for DRIMSeq. FDR = 0.05. 08
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Figure S27: Concordance between DEXSeq and different versions of DRIMSeq for the top significant
DS genes detected by each of the methods. "X" indicates the number of genes detected as DS for
the FDR of 0.05. Blue "X" corresponds to DEXSeq.
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Figure S28: Pasilla data. Numbers of DS genes detected by DRIMSeq in the comparison of
control versus knock-down based on all samples (model full) or only from paired-end samples
(model _full paired). Results for DRIMSeq run with gene-wise dispersion moderated to the trend
on kallisto filtered counts are shown. FDR = 0.05. When comparing the number of genes detected
by DRIMSeq and DEXSeq (Figure in models full and full paired, their behavior is very sim-
ilar. DRIMSeq and DEXSeq detect many more DS genes in the 2 versus 2 comparison than in the
comparison based on all the data (with library layout as a batch effect), and quite a few of the DS
genes detected in the full model are not discovered in the full paired model.
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Figure S29: Pasilla data. Numbers of DS genes detected by DEXSeq in the comparison of control
versus knock-down based on all samples with (model full2) and without (model full) accounting
for the library layout or based on the paired-end samples only (model full paired). Results for
kallisto filtered and HTSeq pre-filtered counts are shown. FDR = 0.05. When accounting for the
library layout, DEXSeq detects almost all the DS genes from the full model analyses and a bunch
of extra DS genes. This shows that library layout covariate, which is in fact a batch effect in this
study, explains a substantial amount of variability in the data, and accounting for it should increase
the power to detect DS genes.
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Figure S30: Adenocarcinoma data. Numbers of DS genes detected by DEXSeq in the comparison of
normal versus tumor tissue with (model full2) and without (model full) accounting for the patient
ID. Results for kallisto filtered and HTSeq pre-filtered counts are shown. FDR = 0.05. When
accounting for the patient ID, DEXSeq detects a substantial amount of DS genes that overlap with
the DS genes from the full model analyses and some extra DS genes. This shows that by accounting
for the within-patient variability, the power to detect DS genes can be increased.

32



A No moderation B Moderation to common C Moderation to trend D  Moderation to trend

T D 4 4 3638 tests
200
| + +
© 2- < 2 < 2
1S3 £ 1S3
§ 5 . 3150
5 5 5 g
o 0 o0 o0 2100
. ? E: £
S S S w
50
2 —— = -2 -2
6 1 2 3 4 5 6 i 2 3 4 5 0 1 2 3 4 5
Log10 of mean expression Log10 of mean expression Log10 of mean expression 0f | | | | I
Number of features 2 4 6 Number of features 2 4 6 Number of features 2 4 6 0.00 0.25 p—\?é?t?es 0.75  1.00
E e F G ke | H 3929 tests
S - 500
+ + +4 :
N‘A rﬂA mfl 400
S 5 S - 8300
52 52 52 §
=] S S g
2 =4 =3 £200
o o o w
- ' )
0 0 o 100
i 2 3 . 5 i 2 3 : 5 i 2 3 : 5
Log10 of mean expression Log10 of mean expression Log10 of mean expression 0
Number of features 2 11 20 Number of features 5 11 20 Number of features 5 11 20 0.00 0.25 p—\(/)é?L?es 0.75  1.00

Figure S31: Results of the pasilla data analyses with DRIMSeq. Upper panels - kallisto counts,
bottom panels - HT'Seq counts. A, B, C, E, F, G: Concentration versus mean gene expression plots
using different dispersion estimation approaches. Dashed line corresponds to the common dispersion
estimate. Additionally, when no moderation is used, a smoothed curve is fitted. The fitting clearly
indicates that there is a dispersion-mean trend present in the data. D, H: P-value histograms for
trended dispersion used in the inference. For kallisto counts, the p-value distribution is more uniform
with a sharp peak close to zero, which suggests a better fit of the DM model to transcript counts
than to exonic counts.
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Figure S32: Results of the adenocarcinoma data analyses with DRIMSeq. Upper panels - kallisto
counts, bottom panels - HT'Seq counts. A, B, C, E, F, G: Concentration versus mean gene expression
plots using different dispersion estimation approaches. Dashed line corresponds to the common
dispersion estimate. Additionally, when no moderation is used, a smoothed curve is fitted. The
fitting clearly indicates that there is a dispersion-mean trend present in the data. D, H: P-value
histograms for trended dispersion used in the inference. For kallisto counts, the p-value distribution
is more uniform with a sharp peak close to zero, which suggests a better fit of the DM model to
transcript counts than to exonic counts.
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Figure S33: Pasilla data. Number of genes that were validated by Brooks et al. for the alternative
exon usage and detected as DS by DEXSeq and DRIMSeq (FDR = 0.05). Model full - comparison
of 4 control samples versus 3 knock-down. Model full paired - comparison of 2 versus 2 paired-end
samples. Model full 2 - as model full but additionally accounts for the library layout.
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Figure S34: Pasilla data. Table with adjusted p-values obtained by DEXSeq and DRIMSeq in the
full model analyses (comparison of 4 control samples versus 3 knock-down) for the genes that were
validated by Brooks et al. for the alternative exon usage.
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Figure S35: Pasilla data. Table with adjusted p-values obtained by DEXSeq and DRIMSeq in the
model full paired analyses (comparison of 2 versus 2 paired-end samples) for the genes that were
validated by Brooks et al. for the alternative exon usage.

36



1500

20000

[
(=3
[=]
o

Frequency
Frequency
Log10 of gamma_+
o

10000

u
o
o

O . i i
3 4 5 6
Log10 of mean expression

2

10 20 0.00 0.25 0.50 0.75 1.00
Number of features per gene p-values

Ve —
drimseq ¥ sqtlseeker drimseq ¥ sqtlseeker Number of features 2 7 12

Figure S36: tuQTL analyses of the CEU population from GEUVADIS data. A: Distribution of
the number of transcripts per gene for genes that had a non NA p-value assigned by DRIMSeq
or sQTLseekeR. They should be almost identical since the count data is identical for both of the
pipelines. B: Distributions of p-values obtained by DRIMSeq and sQTLseekeR. C: Concentration
versus mean gene expression plot from the DRIMSeq analysis with gene-wise dispersion without any
moderation. Notice that none of the estimated values lies on the upper grid boundary, indicating
that the concentration estimates are more stable in the analyses based on 91 samples.
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Figure S37: tuQTL analyses of the YRI population from GEUVADIS data. A: Distribution of
the number of transcripts per gene for genes that had a non NA p-value assigned by DRIMSeq
or sQTLseekeR. They should be almost identical since the count data is identical for both of the
pipelines. B: Distributions of p-values obtained by DRIMSeq and sQTLseekeR. C: Concentration
versus mean gene expression plot from the DRIMSeq analysis with gene-wise dispersion without any
moderation. Notice that none of the estimated values lies on the upper grid boundary, indicating
that the concentration estimates are more stable in the analyses based on 89 samples.
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Figure S38: tuQTL analyses of the CEU population from GEUVADIS data. A, C: Numbers
of gene-SNP pairs and genes that were tested by DRIMSeq and sQTLseckeR. B, D: Numbers of
significant tuQTLs and associated genes (FDR = 0.05). sQTLseckeR detects more tuQTLs than
DRIMSeq, and substantially more genes that are associated to its unique variants.
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Figure S39: tuQTL analyses of the YRI population from GEUVADIS data. A, C: Numbers of gene-
SNP pairs and genes that were tested by DRIMSeq and sQTLseekeR. B, D: Numbers of significant
tuQTLs and associated genes (FDR = 0.05). sQTLseekeR detects more tuQTLs than DRIMSeq, and
substantially more genes that are associated to its unique variants.
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Figure S40: tuQTL analyses of the YRI population from GEUVADIS data. A: Concordance
between sQTLseekeR and DRIMSeq. "X" indicates number of tuQTLs for FDR = 0.05. Panel B,
C and D show characteristics of tuQTLs and genes detected by sQTLseekeR or DRIMSeq for FDR
= 0.05. Values in the brackets indicate numbers of tuQTLs or genes in a given set. Dark gray line
corresponds to tuQTLs or genes that were identified by both of the methods (overlap). B: Distance
to the closest exon of intronic tuQTLs. Light gray line (non_sqtl) corresponds to intronic tuQTLs
that were not called by any of the methods. C: Distribution of mean gene expression for genes that
are associated with tuQTLs. D: Distribution of the number of expressed transcripts for genes that
are associated with tuQTLs. Light gray lines (all genes) represent corresponding features for all the
analyzed genes.
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Figure S41: tuQTL analyses of the CEU population from GEUVADIS data. An example of an
tuQTL validated with PCR in GLiMMPS and detected by DRIMSeq (FDR = 0.05). A: Box-plots
represent the distributions of transcript proportions given for each genotype (0, 1 or 2 alleles different
from the reference). Diamonds represent the DM estimated transcript proportions in each of the
genotype groups (full model estimates), gray squares indicate the proportions estimated from the
polled data (null model). B: Gene structure of HMSD with red area indicating the exon that was
used for the validation and blue dashed line specifying the location of rs9945924 SNP.
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Figure S42: tuQTL analyses of the CEU population from GEUVADIS data. An example of an
tuQTL validated with PCR in GLiMMPS and detected by DRIMSeq (FDR = 0.05). A: Box-plots
represent the distributions of transcript proportions given for each genotype (0, 1 or 2 alleles different
from the reference). Diamonds represent the DM estimated transcript proportions in each of the
genotype groups (full model estimates), gray squares indicate the proportions estimated from the
polled data (null model). B: Gene structure of ATP5SL with red area indicating the exon that was
used for the validation and blue dashed line specifying the location of rs1043413 SNP. The rs1043413
SNP is in high linkage disequilibrium [7] with GWAS SNP rs17318596 associated with height [9].
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Table S2: Metadata and comparisons done for pasilla data with DEXSeq and DRIMSeq. Addition-
ally, for DEXSeq which is implemented as a GLM framework, a model that compares the control and

knock-down samples (like in model full) and takes into account the library layout was fitted (model
full 2).

Sample Name Condition Library Layout Model Model Model Model Model
full  full paired nulll null2  null3

GSM461176 CTL SINGLE cl - cl cl cl
GSM461177 CTL PAIRED cl cl c2 cl c2
GSM461178 CTL PAIRED cl cl cl c2 c2
GSM461179 KD SINGLE c2 - - - -
GSM461180 KD PAIRED c2 c2 - - -
GSM461181 KD PAIRED c2 c2 - - -
GSM461182 CTL SINGLE cl - c2 c2 cl

Table S3: Metadata and comparisons done for adenocarcinoma data with DEXSeq and DRIMSeq.
Additionally, for DEXSeq which is implemented as a GLM framework, a model that compares the

normal and tumor samples (like in model full) and takes into account the patient ID was fitted
(model full 2).

Sample Name Condition Patient ID Model Model Model Model Model

full null normall null normal2 null tumorl null normal2

GSM927308 normal 1 cl cl cl - -
GSM927309 tumor 1 c2 - - cl cl
GSM927310 normal 3 cl cl c2 - -
GSM927311 tumor 3 c2 - - cl c2
GSM927312 normal 4 cl cl cl - -
GSM927313 tumor 4 c2 - - cl cl
GSM927314 normal ) cl c2 c2 - -
GSM927315 tumor 5 c2 - - c2 c2
GSM927316 normal 6 cl c2 cl - -
GSM927317 tumor 6 c2 - - c2 cl
GSM927318 normal 8 cl c2 c2 - -
GSM927319 tumor 8 c2 - - c2 c2
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Table S4: Overlap of DRIMSeq and sQTLseekeR tuQQTLs detected in the CEU population from
the GEUVADIS project at FDR = 0.05 with sQTLs from other analyses.

DRIMSeq sQTLseekeR  Detected tested Total detected

GEUVADIS trQTLs EUR all 2,475 2,466 16,826 83,266
GEUVADIS trQTLs EUR best 15 26 266 536
GLiIMMPS psiQTLs CEU 9 10 91 112
DRIMSeq sQTLseekeR Validated tested Total validated
GLiIMMPS psiQTLs CEU GWAS 1 1 10 10
GLIMMPS psiQTLs CEU PCR 2 2 26 26

Table S5: Overlap of DRIMSeq and sQTLseekeR tuQTLs detected in the YRI population from the
GEUVADIS project at FDR = 0.05 with sQTLs from other analyses.

DRIMSeq sQTLseekeR  Detected tested Total detected

GEUVADIS trQTLs YRI all 1,047 1,226 1,882 3,563
GEUVADIS trQTLs YRI best 7 20 50 75
GLiIMMPS psiQTLs CEU 4 7 78 112
DRIMSeq sQTLseekeR Validated tested Total validated
GLiMMPS psiQTLs CEU GWAS 0 2 9 10
GLIMMPS psiQTLs CEU PCR 1 3 22 26
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