Appendix A: Methods

The government is faced with the decision of whether to stockpile Tamiflu or not. We utilise a simple decision
theoretic model based on a linear loss function to move from statistical results and prior knowledge to a decision.
The objective in Bayesian decision problems is to choose the action that minimises the expected value of a loss
function with respect to the posterior distributions, if data are available, or with respect to prior distributions, if
no data are available, for uncertain parameters. In our case we have two actions, a; and a,, corresponding to not
stockpiling and stockpiling, respectively, and we have a vector of uncertain parameters, 7, which includes the
effectiveness of NAIs, 8, the clinical attack rate of influenza, CAR, the case fatality ratio of pandemic influenza,
CFR, the QALY losses associated with a pandemic influenza death, QALY, the probability of a pandemic
occurring in the shelf life of NAls, Prob, and the probability that a pandemic influenza death occurred in a person
who was hospitalised. We specify these parameters later. The setting for our decision is an influenza pandemic
and we will choose to stockpile NAIs if the expected losses of stockpiling are less than the expected losses for not
stockpiling. We consider only deaths arising from stockpiling and no other potential outcome such as pneumonia.

The losses from not stockpiling are the expected value of the deaths that may occur due to pandemic influenza,
dyose- The losses from stockpiling are d;,s, plus the costs of stockpiling, ¢, minus the value of the deaths averted
due to stockpiling dperteq- We specify a simple linear loss function: L(a,, ) = d;os; and L(a,, ) = djpst + ¢ —
davertea- The Bayesian decision is to stockpile if p(a,) = E(L(a,, 7)) < p(ay) = E(L(ay, @) which is
equivalent to the decision rule to stockpile if E(c — dgperteq) < 0. Or, equivalently, the decision is to stockpile if
the expected net benefits E (dgperteq — €) are positive.

We specify
Aavertea = A X Prob x Pop X Treated X CAR X CFR X QALY X Hospital x (1 —6)

where c is the costs of stockpiling, A is the social willingness to pay for a quality adjusted life year (QALY), and
Treated is the proportion of symptomatic cases that receive NAIs.

The expected net benefits are

E(dgpertea —C€) = A X Pop X Treated X Hospital X E(QALY) X E(Prob) X E(CAR X CFR) X (1 — E(H))
—C

where the expectations are taken with respect to the posterior distributions of each variable, and where we have

assumed that ¢, A, Pop, Treated, and Hospital are known constants and that (CAR X CFR) and 6 are

independent. This specification can be seen as analogous to an evaluation of the cost-effectiveness of NAIs where
it is stockpiled if its cost-effectiveness is less than A.

Parameters
Number of Pandemics

The occurrence of a pandemic in the shelf life of NAls is modelled as a Bernouilli distribution with probability p.
The time period considered is ten years, the shelf life of NAls. A uniform (0,1) distribution for p was specified.
For the data, each decade between 1900 and 2010 was considered an observation equal to one if a pandemic
occurred and zero otherwise. We specified the following model for each decade t = 1, ...,11:

x.~Bern(p)
p~Unif (0,1)
Clinical Attack Rate and Case Fatality Ratio

The clinical attach rate and case fatality ratios were assumed to be observations from Beta distributions with
parameters @cag, Becar aNd acrgr, Berr, tespectively. Uniform (0, 1000) (hyper)prior distributions were specified
for each parameter. These were updated using data from previous pandemics.

QALY Losses Associated with an Influenza Death

As above, the mean age of a pandemic influenza associated death was modelled as a Beta distribution, but scaled
to the interval [0, 81.5], the upper limit representing the life expectancy at birth in the United Kingdom. Uniform
(0, 1000) (hyper)prior distributions were specified for each parameter and updated with data from previous
pandemics.



To calculate QALYs lost due a death, the estimated mean age at death was subtracted from 81.5. The net present
value (NPV) of the lost years was calculated using a discount rate of 3.5%, and each year weighted by 0.8. Setting
the upper limit at 81.5 may represent an underestimate as the life expectancy of a person dying in middle age is
greater than 81.5.

Effectiveness of Oseltamivir and Bias Correction

The estimated effect size from the observational meta-analysis, y, is arguably biased with respect to the true effect
size, 6. We followed the bias modelling method outlined by Turner et al to ‘correct’ the estimated effect. We
allowed for both proportional and additive biases, represented by 8 and &, respectively, and assumed the model:

y~f(BO +8,s%)

where f(u, o2) is a general distribution with mean u and variance o2. The proportional and additive biases are
distributed as B~ (ug, 07 ) and 8~f (us, 03).

There are assumed to be different sources of bias, such as selection bias and performance bias, which contribute
to the overall bias. A questionnaire was provided to each independent reviewer regarding different sources of bias
within the study, and each reviewer provider their beliefs about the bias. The full elicitation process is described
by Turner et al, along with methods for determining 4, al?, us, and o#.* Results were pooled between reviewers
by taking medians of the mean and standard errors.

The effectiveness parameter 6 is a relative risk. We converted the odds ratios in the observational data to relative
risks.?

The bias corrected estimator of the effectiveness of oseltamivir was then calculated as:
)
p=""2
B

With corresponding estimate of the standard error:
SE(#) =s*+ 0% + 0

We have focussed here on what are described as ‘internal’ biases and not ‘external’ biases. This is because the
external biases mostly relate to events as yet unobserved which are incorporated in the model. Similarly, variable
access to the treatment is accommodated in the model. Our approach is consistent with Turner et al. who advocate
that only internal biases are considered in a systematic review/meta-analysis.* Our study provides the modelling
corollary of such a review.

Statistical Code

require(R20penBUGS)
require(coda)

model<-function(){

#loss function
12 <- ¢ - lambda * pop * «car.1 * cfr.1 * age.4 * (1 - theta) * prob * p_hosp

#priors for parameters
prob ~ dbern(prob.1)
theta ~ dnorm(0.89,123.456)

car.1l ~ dbeta(alpha, beta)
cfr.1 ~ dbeta(alpha2, beta2)
age.1l ~ dbeta(ri,r2)

1
1
1
age.2 <- 82.5-age.1*81.5
age.3 <- round(age.2)
age.4 <- 0.8 * age.npv[age.3]
#model for clinical attack rate
for(i in 1:4){
car[i]~dbeta(alpha,beta)

}
alpha ~ dunif(0,1000)
beta ~ dunif(0,1000)

#model for case fatality ratio



for(i in 1:5){
cfr[i]~dbeta(alpha2,beta2)

¥
alpha2 ~ dunif(e,1000)
beta2 ~ dunif(0,1000)

#tmodel for remaining QALYs
for(i in 1:4){
age[i]~dbeta(ri,r2)

rl ~ dunif(0,1000)
r2 ~ dunif(0,1000)

#model for probability of pandemic in a decade
for(i in 1:11){
freq[i]~dbern(prob.1)

prob.1l~dunif(0,1)

#model for proportion of deaths hospitalised
tot_hosp ~ dbin(p_hosp,n_hosp)
p_hosp ~ dbeta(0.0001,0.0001)

}

model.file <- file.path(tempdir(),"model.txt")
write.model(model, model.file)

#data
params<-c("theta","12","car.1","cfr.1","age.4","prob.1","
C <- 560000000

pop <- 50500000

obs<- 0.75

lambda<-20000

gqaly<-18.3

car<-c(0.25,0.30,0.35,0.07)
cfr<-c(0.0028,0.025,0.004,0.004,0.0005)
age<-c(27,65,62,45)

age<-age/81.5
age.npv<-sapply(1:
freq<-c(0,1,0,0,0,1,
tot_hosp<-125
n_hosp<-136
#prob<-1-(dpois(0,lambda=0.04)"10)

p_hosp")

200, function(x)npv(x,0.035))
1,1,0,0,0,1)

data<-list("c","pop","lambda","car","cfr","age.npv", "age","freq", "tot_hosp", "n_hosp")
inits <- function() { list(alpha=1, beta =1,alpha2=1, beta2 =1, rl=1, r2=1, rate=0.3,p_hosp=0.5) }

out <- bugs(data, inits, params,model,codaPkg=TRUE,
n.iter=10000,n.thin=10,bugs.seed=5)

npv<-function(t,r){
npv<-0
for(i in 0:t){
npv<-npv+1l/(1+r)~i

return(npv)
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Appendix B: Data Sources and Additional Results
Previous pandemics

Table B1 shows clinical attack rates (CAR) and case fatality ratios (CFR) from previous influenza pandemics
for which these data were available that were used in our model.*

Figure B1 shows the prior distributions for the CAR and CFR used in the model. Beta distributions were used
and parameters were estimated from the data in table B1. Methods are presented in Appendix A.

Oseltamivir Effectiveness and Bias Correction

The adjusted effectiveness estimate used in this study was an odds ratio (OR) of 0.81 (95% confidence interval:
0.70, 0.93) as reported in Muthuri et al for the odds of mortality with neuraminidase inhibitors irrespective of
timing compared to no treatment. To represent the reduction in the risk of mortality, we require a relative risk for
the model. The baseline risk of mortality in the quoted study is approximately 10%. We convert to a RR using the
formula: RR = OR/(1 — p + (p X OR)).[20] This gives an estimated adjusted RR of 0.89 (0.71, 1.07).

Figure B2 shows the estimates for total additive biases estimated by each reviewer presented as the effect the
reviewer would expect to observe if there was no intervention effect in the study. The bias corrected relative risk
was 0.89 (0.72, 1.09).

Table B1. Previous pandemics and associated clinical attack rates and case fatality ratios. Data from UK
government document on the mitigation of pandemic influenza.[1]

Year of Pandemic Geographical Spread Clinical attack  Case fatality Average age of
Outbreak rates (%) ratios (%) case fatality
1889-92 Asiatic or Russian Flu Russia -> ROW 60° 0.28 -
1918 Spanish flu Unknown 25 25 27
1957 Asian flu China -> ROW 30 0.4 65
1968 Hong Kong flu China -> ROW 35 0.4 62
2009 2009 flu pandemic Mexico/USA -> ROW 7 0.05 45

This figure was not used in the modelling since the UK government believes a CAR of 50% to be the ‘worst case scenario’.
ROW = Rest of world



Figure B1. Estimated densities for clinical attack rate (top left), case fatality ratio (top right), QALY losses
associated with a pandemic influenza death (bottom left), and the probability of a pandemic occurring in a

decade (bottom right).
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Figure B2. Estimated additive bias from five independent reviewers. Biases were assessed across a range of
domains. This plot shows total additive biases which can be interpreted as the effect the reviewer would expect
to observe if there was no intervention effect in the study.
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