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Appendix A: Methods 

The government is faced with the decision of whether to stockpile Tamiflu or not. We utilise a simple decision 

theoretic model based on a linear loss function to move from statistical results and prior knowledge to a decision. 

The objective in Bayesian decision problems is to choose the action that minimises the expected value of a loss 

function with respect to the posterior distributions, if data are available, or with respect to prior distributions, if 

no data are available, for uncertain parameters. In our case we have two actions, 𝑎1 and 𝑎2, corresponding to not 

stockpiling and stockpiling, respectively, and we have a vector of uncertain parameters, 𝜋, which includes the 

effectiveness of NAIs, 𝜃, the clinical attack rate of influenza, 𝐶𝐴𝑅, the case fatality ratio of pandemic influenza, 

𝐶𝐹𝑅, the QALY losses associated with a pandemic influenza death, 𝑄𝐴𝐿𝑌, the probability of a pandemic 

occurring in the shelf life of NAIs, 𝑃𝑟𝑜𝑏, and the probability that a pandemic influenza death occurred in a person 

who was hospitalised. We specify these parameters later. The setting for our decision is an influenza pandemic 

and we will choose to stockpile NAIs if the expected losses of stockpiling are less than the expected losses for not 

stockpiling. We consider only deaths arising from stockpiling and no other potential outcome such as pneumonia. 

The losses from not stockpiling are the expected value of the deaths that may occur due to pandemic influenza, 

𝑑𝑙𝑜𝑠𝑡 . The losses from stockpiling are 𝑑𝑙𝑜𝑠𝑡  plus the costs of stockpiling, 𝑐, minus the value of the deaths averted 

due to stockpiling 𝑑𝑎𝑣𝑒𝑟𝑡𝑒𝑑. We specify a simple linear loss function: 𝐿(𝑎1, 𝜋) = 𝑑𝑙𝑜𝑠𝑡 and 𝐿(𝑎2, 𝜋) = 𝑑𝑙𝑜𝑠𝑡 + 𝑐 −

𝑑𝑎𝑣𝑒𝑟𝑡𝑒𝑑. The Bayesian decision is to stockpile if 𝜌(𝑎2) = 𝐸(𝐿(𝑎2, 𝜋)) < 𝜌(𝑎1) = 𝐸(𝐿(𝑎1, 𝜋)) which is 

equivalent to the decision rule to stockpile if 𝐸(𝑐 − 𝑑𝑎𝑣𝑒𝑟𝑡𝑒𝑑) < 0. Or, equivalently, the decision is to stockpile if 

the expected net benefits 𝐸(𝑑𝑎𝑣𝑒𝑟𝑡𝑒𝑑 − 𝑐) are positive. 

We specify 

𝑑𝑎𝑣𝑒𝑟𝑡𝑒𝑑 = 𝜆 × 𝑃𝑟𝑜𝑏 × 𝑃𝑜𝑝 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 × 𝐶𝐴𝑅 × 𝐶𝐹𝑅 × 𝑄𝐴𝐿𝑌 × 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 × (1 − 𝜃) 

where 𝑐 is the costs of stockpiling, 𝜆 is the social willingness to pay for a quality adjusted life year (QALY), and 

𝑇𝑟𝑒𝑎𝑡𝑒𝑑 is the proportion of symptomatic cases that receive NAIs.   

The expected net benefits are  

𝐸(𝑑𝑎𝑣𝑒𝑟𝑡𝑒𝑑 − 𝑐) = 𝜆 × 𝑃𝑜𝑝 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 × 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 × 𝐸(𝑄𝐴𝐿𝑌) × 𝐸(𝑃𝑟𝑜𝑏) × 𝐸(𝐶𝐴𝑅 × 𝐶𝐹𝑅) × (1 − 𝐸(𝜃))

− 𝑐 

where the expectations are taken with respect to the posterior distributions of each variable, and where we have 

assumed that 𝑐, 𝜆, 𝑃𝑜𝑝, 𝑇𝑟𝑒𝑎𝑡𝑒𝑑, and 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 are known constants and that (𝐶𝐴𝑅 × 𝐶𝐹𝑅) and 𝜃 are 

independent. This specification can be seen as analogous to an evaluation of the cost-effectiveness of NAIs where 

it is stockpiled if its cost-effectiveness is less than 𝜆.  

Parameters  

Number of Pandemics 

The occurrence of a pandemic in the shelf life of NAIs is modelled as a Bernouilli distribution with probability 𝑝. 

The time period considered is ten years, the shelf life of NAIs. A uniform (0,1) distribution for 𝑝 was specified. 

For the data, each decade between 1900 and 2010 was considered an observation equal to one if a pandemic 

occurred and zero otherwise. We specified the following model for each decade 𝑡 = 1, … ,11: 

𝑥𝑡~𝐵𝑒𝑟𝑛(𝑝) 

𝑝~𝑈𝑛𝑖𝑓(0,1) 

Clinical Attack Rate and Case Fatality Ratio 

The clinical attach rate and case fatality ratios were assumed to be observations from Beta distributions with 

parameters 𝛼𝐶𝐴𝑅 , 𝛽𝐶𝐴𝑅 and 𝛼𝐶𝐹𝑅 , 𝛽𝐶𝐹𝑅 , respectively. Uniform (0, 1000) (hyper)prior distributions were specified 

for each parameter. These were updated using data from previous pandemics.   

QALY Losses Associated with an Influenza Death 

As above, the mean age of a pandemic influenza associated death was modelled as a Beta distribution, but scaled 

to the interval [0, 81.5], the upper limit representing the life expectancy at birth in the United Kingdom. Uniform 

(0, 1000) (hyper)prior distributions were specified for each parameter and updated with data from previous 

pandemics.  
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To calculate QALYs lost due a death, the estimated mean age at death was subtracted from 81.5. The net present 

value (NPV) of the lost years was calculated using a discount rate of 3.5%, and each year weighted by 0.8. Setting 

the upper limit at 81.5 may represent an underestimate as the life expectancy of a person dying in middle age is 

greater than 81.5. 

Effectiveness of Oseltamivir and Bias Correction 

The estimated effect size from the observational meta-analysis, 𝑦, is arguably biased with respect to the true effect 

size, 𝜃. We followed the bias modelling method outlined by Turner et al to ‘correct’ the estimated effect.1 We 

allowed for both proportional and additive biases, represented by 𝛽 and 𝛿, respectively, and assumed the model: 

𝑦~𝑓(𝛽𝜃 + 𝛿, 𝑠2) 

where 𝑓(𝜇, 𝜎2) is a general distribution with mean 𝜇 and variance 𝜎2. The proportional and additive biases are 

distributed as 𝛽~𝑓(𝜇𝛽 , 𝜎𝛽
2) and 𝛿~𝑓(𝜇𝛿 , 𝜎𝛿

2).  

There are assumed to be different sources of bias, such as selection bias and performance bias, which contribute 

to the overall bias. A questionnaire was provided to each independent reviewer regarding different sources of bias 

within the study, and each reviewer provider their beliefs about the bias. The full elicitation process is described 

by Turner et al, along with methods for determining 𝜇𝛽, 𝜎𝛽
2, 𝜇𝛿, and 𝜎𝛿

2.1 Results were pooled between reviewers 

by taking medians of the mean and standard errors. 

The effectiveness parameter 𝜃 is a relative risk. We converted the odds ratios in the observational data to relative 

risks.2  

The bias corrected estimator of the effectiveness of oseltamivir was then calculated as: 

𝜃 =
𝑦 − 𝛿

𝛽
 

With corresponding estimate of the standard error: 

𝑆𝐸(𝜃) = 𝑠2 + 𝜃2𝜎𝛽
2 + 𝜎𝛿

2 

We have focussed here on what are described as ‘internal’ biases and not ‘external’ biases. This is because the 

external biases mostly relate to events as yet unobserved which are incorporated in the model. Similarly, variable 

access to the treatment is accommodated in the model. Our approach is consistent with Turner et al. who advocate 

that only internal biases are considered in a systematic review/meta-analysis.1 Our study provides the modelling 

corollary of such a review. 

Statistical Code 

require(R2OpenBUGS) 
require(coda) 
 
model<-function(){ 
 
  #loss function 
  l2 <- c - lambda  * pop *  car.1 * cfr.1 * age.4 * (1 - theta) * prob * p_hosp 
   
  #priors for parameters 
  prob ~ dbern(prob.1) 
  theta ~ dnorm(0.89,123.456)   
  car.1 ~ dbeta(alpha, beta) 
  cfr.1 ~ dbeta(alpha2, beta2) 
  age.1 ~ dbeta(r1,r2) 
  age.2 <- 82.5-age.1*81.5 
  age.3 <- round(age.2) 
  age.4 <- 0.8 * age.npv[age.3] 
 
  #model for clinical attack rate   
  for(i in 1:4){ 
    car[i]~dbeta(alpha,beta) 
  } 
  alpha ~ dunif(0,1000) 
  beta ~ dunif(0,1000) 
   
  #model for case fatality ratio 
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  for(i in 1:5){ 
    cfr[i]~dbeta(alpha2,beta2) 
  } 
  alpha2 ~ dunif(0,1000) 
  beta2 ~ dunif(0,1000) 
 
  #model for remaining QALYs 
  for(i in 1:4){ 
    age[i]~dbeta(r1,r2) 
  } 
  r1 ~ dunif(0,1000) 
  r2 ~ dunif(0,1000) 
 
  #model for probability of pandemic in a decade 
  for(i in 1:11){ 
    freq[i]~dbern(prob.1) 
  } 
  prob.1~dunif(0,1) 
 
  #model for proportion of deaths hospitalised 
  tot_hosp ~ dbin(p_hosp,n_hosp) 
  p_hosp ~ dbeta(0.0001,0.0001) 
} 
 
model.file <- file.path(tempdir(),"model.txt")  
write.model(model, model.file) 
 
#data 
 
params<-c("theta","l2","car.1","cfr.1","age.4","prob.1","p_hosp") 
c <- 560000000 
pop <- 50500000 
obs<- 0.75 
lambda<-20000 
qaly<-18.3 
car<-c(0.25,0.30,0.35,0.07) 
cfr<-c(0.0028,0.025,0.004,0.004,0.0005) 
age<-c(27,65,62,45) 
age<-age/81.5 
age.npv<-sapply(1:200,function(x)npv(x,0.035)) 
freq<-c(0,1,0,0,0,1,1,0,0,0,1) 
tot_hosp<-125 
n_hosp<-136 
#prob<-1-(dpois(0,lambda=0.04)^10) 
 
data<-list("c","pop","lambda","car","cfr","age.npv","age","freq","tot_hosp","n_hosp") 
inits <- function() { list(alpha=1, beta =1,alpha2=1, beta2 =1, r1=1, r2=1, rate=0.3,p_hosp=0.5) } 
 
out <- bugs(data, inits, params,model,codaPkg=TRUE, 
            n.iter=10000,n.thin=10,bugs.seed=5) 
 
npv<-function(t,r){ 
  npv<-0 
  for(i in 0:t){ 
    npv<-npv+1/(1+r)^i 
  } 
  return(npv) 
} 
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Appendix B: Data Sources and Additional Results 

Previous pandemics 

Table B1 shows clinical attack rates (CAR) and case fatality ratios (CFR) from previous influenza pandemics 

for which these data were available that were used in our model.1  

Figure B1 shows the prior distributions for the CAR and CFR used in the model. Beta distributions were used 

and parameters were estimated from the data in table B1. Methods are presented in Appendix A. 

Oseltamivir Effectiveness and Bias Correction 

The adjusted effectiveness estimate used in this study was an odds ratio (OR) of 0.81 (95% confidence interval: 

0.70, 0.93) as reported in Muthuri et al for the odds of mortality with neuraminidase inhibitors irrespective of 

timing compared to no treatment. To represent the reduction in the risk of mortality, we require a relative risk for 

the model. The baseline risk of mortality in the quoted study is approximately 10%. We convert to a RR using the 

formula: 𝑅𝑅 = 𝑂𝑅/(1 − 𝑝 + (𝑝 × 𝑂𝑅)).[20] This gives an estimated adjusted RR of 0.89 (0.71, 1.07). 

Figure B2 shows the estimates for total additive biases estimated by each reviewer presented as the effect the 

reviewer would expect to observe if there was no intervention effect in the study. The bias corrected relative risk 

was 0.89 (0.72, 1.09). 

 

Table B1. Previous pandemics and associated clinical attack rates and case fatality ratios. Data from UK 

government document on the mitigation of pandemic influenza.[1] 

Year of 

Outbreak 

Pandemic Geographical Spread Clinical attack 

rates (%) 

Case fatality 

ratios (%) 

Average age of 

case fatality 

1889-92 Asiatic or Russian Flu Russia -> ROW 60a 0.28 - 

1918 Spanish flu Unknown 25 2.5 27 
1957 Asian flu China -> ROW 30 0.4 65 

1968 Hong Kong flu China -> ROW 35 0.4 62 

2009 2009 flu pandemic Mexico/USA -> ROW 7 0.05 45 
aThis figure was not used in the modelling since the UK government believes a CAR of 50% to be the ‘worst case scenario’. 
ROW = Rest of world 
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Figure B1. Estimated densities for clinical attack rate (top left), case fatality ratio (top right), QALY losses 

associated with a pandemic influenza death (bottom left), and the probability of a pandemic occurring in a 

decade (bottom right). 
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Figure B2. Estimated additive bias from five independent reviewers. Biases were assessed across a range of 

domains. This plot shows total additive biases which can be interpreted as the effect the reviewer would expect 

to observe if there was no intervention effect in the study. 
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