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Supplementary Methods
Datasets and their causal genes
We decided to work with data in Shulzhenko et al [28] and Mine et all [29] because of the information provided by their research about the genes triggering the changes in gene interactions in both systems (BcKO and cervical cancer) and, consequently, in phenotype. In this work, these genes are also referred to as causal genes. The first paper studied the effects in gene-gene interactions of B cell Knockout mice while the second studied gene expression DEGs network of cervical cancer and identified DEGs located in the regions of frequent chromosomal aberrations. Since we used some of their results, such as causal genes and DEGs, we used the same datasets and normalization as in these papers.

Bcell Knockout (BcKO)
Gene Expression Omnibus (GEO) data repository information can be found in Supplementary Table S1 along with reference, strain background, sample size, platform and number of transcripts.
Data processing: After subtraction of local background, signal intensity values were filtered to remove those lower than 10. We only considered genes with gene symbol and present in at least 70% of arrays. Data from GEO was already processed: log 2 transformation and median normalization.

Causal genes: Immunoglobulin genes expression is limited to B lymphocytes As expected in the gut of B cell deficient mice these genes have much lower expression comparing to control mice as well [28]. Since we have experimentally demonstrated in our previous study [28] that it gene expression phenotype observed in Bcell deficient intestines is predominantly dependent on ability of B cells to produce antibodies, we considered immunoglobulin genes as causal genes in analysis and they can be found in Dataset 1Supplementary Table S3.  

Cervical Cancer
Mine et al [28] searched PubMed at the NCBI database (http://www.ncbi.nlm.nih.gov/pubmed/) for studies of microarray in cervical cancer (published until 03/2009) and selected four studies [50 -53] that: (i) had publicly available microarray data, (ii) used tumor and normal clinical samples, (iii) used oligonucleotide arrays and (iv) had sample size in each class  5 (Supplementary Table S2). Besides publicly available data, they also analyzed gene expression from cervical cancer biopsies and normal adjacent tissue samples.
Gene Expression Omnibus (GEO) data repository information can be found in Supplementary Table S2 along with reference, sample size, platform and number of transcripts.
Data processing: Just like in [28], for all studies, we only considered genes found in at least 70% of arrays. Data were already normalized in the data repository, except for data from [53], to which we applied median normalization, exactly like in [29]. 
Causal Genes: It was proven in [29] that there is a strong association between chromosomal aberrations and DEGs which shows that most of the DEGs located in the regions of frequent chromosomal aberrations are causal genes. We used the causal genes provided in [29] (Supplementary_Tables.xlsxDataset 2).
Supplementary Table S1: Datasets included in the meta-analysis of gene expression microarray data for Bcell Knockout. 
	 Reference
	Accesion Number
	Strain
	# normal mice
	# BcKO mice
	Array Platform
	Approximate number of transcripts

	Shulzhenko et al, 2011
	GSE23573
	B10.A littermates
	12
	12
	NIAID Mmca -- Mouse 
	38K

	Shulzhenko et al, 2011
	GSE23573
	BALB/c
	10
	10
	NIAID Mmca -- Mouse 
	38K



Supplementary Table S2: Datasets included in the meta-analysis of gene expression microarray data for cervical cancer
	Reference
	Accesion Number
	# normal tissue samples
	# tumor tissue samples
	Array Platform
	Approximate
number of transcripts

	Mine et al, 2013
	GSE26342
	20
	40
	In house, NIAID, NIH
	14K

	Biewenga et al, 2008
	GSE7410
	5
	35
	Agilent-012391 G4112A
	41K

	Scotto et al, 2008
	GSE9750
	21
	32
	Affymetrix HG-U133A
	39K

	Pyeon et al, 2007
	GSE6791
	8
	20
	Affymetrix HG-U133_Plus_2
	47K

	Zhai et al, 2007
	GSE7803
	10
	21
	Affymetrix HG-U133A
	39K


 
Differentially Expressed Genes (DEGs)
B cell Knockout
Since in [28] genes expressed in B cells were excluded from the analysis, we decided to identify DEGs considering all genes. It was done separately for each strain using the Excel add-in BRB – Array Tools Version 4.4.1 Stable developed by Dr. Richard Simon & BRB-ArrayTools Development Team in DCTD: Biometric Research Program at NIH National Cancer Institute. The univariate test used to test if there was expression mean change between states was the Paired T-test (with random variance model). 
From this point forward, the DEGs analysis was done in the statistical software R version 3.1.2. The two tables were merged based on probe IDs. Then only genes present in both studies were considered. Finally, we did the meta-analysis by calculating Fisher p-value [54], also known as Fisher’s method or Fisher’s combined probability test, and then applied Benjamini Hochberg false discovery rate (FDR) [55] on Fisher p-value. Only genes with FDR lower than 0.1 were considered differentially expressed genes.

In order to keep genes that are individually alike we applied the following filters:
· Same direction of regulation in all studies (either up or down regulated in all studies)
· Individual t-test p-value < 0.05 

We ended up with 584 DEGs (509 removing Gene symbol duplicates).  
Table with BcKO DEGs in Dataset 4Supplementary_Tables.xlsx (sheet: DEGs_BcKO_fdr001_pv005)

Cervical Cancer
The 1268 DEGs analyzed in this work from cervical cancer data have been previously discovered in [29] by comparing gene expression from tumor and normal samples. 

Network Reconstruction
Correlation
The procedure used to build a correlation network was the same as in [6]. It basically consists of computing the correlation (here we worked with Pearson correlation) for all pairs of DEGs for each dataset separately as well as states. Then, for each state, only pairs that present the same direction of correlation (sign) in all studies and correlation p-value lower than a threshold are kept. These two filters only take place on studies where both genes in a pair are present. Then we perform meta-analysis by combining the correlation p-values through Fisher’s method. False discovery rate (Benjamini Hochberg FDR) is then applied on Fisher p-value. Next, the pairs with FDR lower than a threshold are chosen. At last, only the pairs that pass PUC [56] are considered correlated and therefore represent edges in the network. Figure 1A illustrates the BcKO network with 433 connected nodes and 1583 edges. 
The filters and thresholds used to build the networks for BcKO and cervical cancer can be found in Table S3 and Table S4 respectively. In each system, the values are the same for both states.
Supplementary Table S3: All filters for all calculations on BcKO data
	
	DEGs
	DCPs
	 DEGs Correlation network

	Missing allowed
	30% max (BRB)
	30% max 
	Inherited from DEGs

	Mean p-value (BRB)
	0.05
	 
	Inherited from DEGs

	Regulation
	same in all studies
	
	Inherited from DEGs

	Correlation p-value 
	
	if p-value > 0.2, marked as NOT significantly correlated
	< 0.2

	Correlation direction
	
	same in all studies present for at least one state
	Same in all studies, for each separate state

	Difference of correlation p-value
	
	< 0.1
	

	Minimum number of studies present
	2 out of 2
	2 out of 2
	Inherited from DEGs

	Sample size
	
	> 2
	

	Difference of correlation direction
	
	2 out of 2
	

	FDR on Fisher p-value
	< 0.1
	< 0.02 
	< 0.025

	PUC
	
	 
	Applied after FDR filter

	Procedure for
duplicate Gene symbol
	
	Select pair with lower difference of correlation fisher p-value. 

Remove daps that have the same gene symbol combination but different probe ids and have different change of correlation direction 
	If Different probe IDs have the same Gene symbol, they are going to be interpreted as the same gene in the network.



Supplementary Table S4: All filters for all calculations on cervical cancer data
	
	DCPs
	 DEGs Correlation network
	DEGs Local Partial Correlation

	Missing allowed
	30% max
	
	30% max in separate states

	Correlation p-value 
	if pv > 0.2, marked as NOT significantly correlated
	< 0.1
	Significant in DEGs Correlation network

	Correlation direction
	same in all studies present for at least one state
	Same in all studies, for each separate state
	

	Local Partial correlation p-value 
	 
	 
	< 0.4

	Local Partial correlation direction
	 
	 
	Same in all studies, for each separate state

	Difference of correlation p-value
	< 0.1
	
	

	Minimum number of studies present
	3 out of 5
	
	

	Sample size
	> 2
	
	

	Difference of correlation direction
	same in all studies present
	
	

	FDR on Fisher p-value
	< 0.0025 
	< 10-8
	< 0.05

	PUC
	 
	Applied after FDR filter
	

	Procedure for
duplicate Gene symbol
	Select pair with lower difference of correlation fisher pv. 


	Select pair with lower correlation fisher pv. (Nothing done when they show different directions in correlation)
	Select pair with higher correlation. (Nothing done when they show different directions in correlation)



Local Partial Correlation Network
Two aspects of cervical cancer data motivated us to use local partial correlation for this system. First of all, we have more samples throughout five datasets (see Supplementary Tables S1 and S2) which allows us to have more confidence in our results and second we already know that tumors in general present heterogeneous causal factors. The partial correlation approach gives us the alternative to only consider edges that represent direct regulatory relations.
In this paper we used the new approach developed in [] called local partial correlation. This approach was elaborated specially for cases when there are more variables than samples which happens regularly in genetics and is a serious problem in classical statistics. First we calculate the correlation network. Then for each significantly correlated pair the inverse method is applied exclusively to the correlation sub-matrix formed only by the closest neighbors of the pair along with the genes forming the pair, Figure S1. If the number of closest neighbors is still higher than the number of samples n, then we decreasingly rank the correlations of the neighbors to either genes in the pair and select the first n/2 neighbors. For each sub- matrix, we only keep the partial correlation value regarding the pair that formed that sub- matrix and then calculate its p-value also based on the sub- matrix.
Partial correlations were estimated only for the significant (Pearson) correlations in co-expression network. Thus the same definition of DCPs (by Pearson correlation) can still represent structural changes as long as it remains present in one of the two networks.
Figure 1B illustrates the local partial correlation network for cervical cancer using only tumor data.  It has 578 connected nodes and 824 edges.
Differentially Co-expressed Pairs/Genes (DCPs/DC genes).
For both biological systems studied in this paper we identified the Differentially Co-expressed Pairs using the same procedure. We start considering all genes in the dataset and filter out the genes presenting more than 30% missing data. Next, we calculate for each possible pair of genes their correlation in 2 different states and then the difference of correlation between those states and filtered out pairs that are not present in at least a fixed number of datasets (BcKO: 2 (all studies), cervical cancer: 3 out of 5) and do not have sample size greater than 2. In all datasets the difference between correlations in two states must have the same direction (sign). To assure similarities between datasets we select the pairs that have the same direction (sign) of correlation at a significance level of 20% in at least one state. This way we ascertain that the pair is correlated in at least one state and has the same behavior in the state whereich the correlation occurs. We then proceed to the computation of the p-value for the difference of correlation [21] and only keep the pairs with p-value lower than 20% in all studies. Now meta-analysis is done through Fisher’s method and then FDR. Next we eliminate the pairs that show FDR higher than a threshold (Table S3, S4). The final step is to identify the pairs that passed the FDR filter and were considered significantly correlated in the final reconstructed network (correlation network for BcKO and local partial correlation network for cervical cancer). Differentially Co-expressed Genes for BcKO and cervical cancer can be found in Dataset 3Excel file and Table 1S5 (DCPs – cancer) respectively.











Bi-Partite Betweeness Centrality
Bi-Partite Betweeness Centrality points to possible bottlenecks.

[image: ]
Figure S1. Local partial correlation scheme: we calculate the LPC for pair X2, X5. Note that the neighborhood of this pair is the set of nodes X3, X6, X8, X9. Thus the inverse method is applied exclusively to the correlation sub-matrix formed only by the genes X2, X5, X3, X6, X8, X9.

Supplementary Table S5: DCPs – cancer (* key drivers)
	Gene symbol 1
	Gene symbol 2
	Change direction
	Sign of local partial correlation in tumor
	Regulation 1
	Regulation 2

	ANP32E
	CACYBP
	Gained edge
	> 0
	UP
	UP

	CENPN
	DHFR
	Gained edge
	> 0
	UP
	UP

	C10orf68
	FGFR2
	Gained edge
	> 0
	DN
	DN

	AK2
	HNRNPR
	Gained edge
	> 0
	UP
	UP

	CEP70*
	SEPHS1
	Gained edge
	> 0
	UP
	UP

	NIPAL2
	TRPM3
	Gained edge
	> 0
	DN
	DN

	They stem ARHGEF12
	ZSCAN18
	Gained edge
	> 0
	DN
	DN



DCPs analysis in BcKO DEGs network.
[image: ]
Figure S2. A) 78 Differentially Correlated Pairs (DCPs) were found, of which 54 represent correlation gains (edges which were not present in Control network but showed up in BcKO) and 24 represent correlation losses. The table stratifies the set of pairs representing correlation gains and losses according to the amount of Ig genes (0, 1 or 2) present in a pair. Note that 39 out of 54 of correlation gain DCPs are formed by at least one Ig gene while only 2 out of 22 correlation losses have at least one Ig gene. B) The 78 DCPs are formed by a total of 94 Differentially Co-expressed genes (DC genes). 58 DC genes participate only in correlation gain DCPs, 31 only in correlation loss DCPs and 5 of them participate in both correlation gain and loss DCPs. The results show enrichment for Ig genes among DC genes in correlation gain: 24% (15 out of 63 (=58+5)) of DC genes are Ig genes vs 2.7% (11 out of 415) of other DEGs are Ig genes (p value < 0.001). Meanwhile no enrichment was observed for correlation loss as a result of B cell deficiency: 3% (1 out of 36 (=31+5)) of DC genes are Ig genes vs 2.7% (11 out of 415) of other DEGs are Ig genes.

Deciphering the role of DCPs in cervical cancer DEGs network.
After locating the DCPs in the cervical cancer network, we realized that only one key driver was part of a DCP. This perception along with the knowledge from literature that most of the genes in DCPs may play some regulatory roles in other types of cancer [3-4] led us to come up with a new hypothesis: DCPs play critical role in the flow coming from the key drivers and spreading throughout the network Figure S3. In order to verify this theory we investigated two angles: Minimum Shortest Path and Bi-partite Betweenness Centrality.
[image: ]
Figure S13. Hypothetic example of causal genes (nodes in red) communicating with all genes through DCPs (edges in black). 

Minimum Shortest Path
It is necessary to unveil how close the DCPs are from the key drivers for the purpose of assessing DCPs’ importance in the network flow coming from the key drivers and reaching all other genes. The closer DCP genes are to the key drivers the more evidence we have that the flow from the key drivers must pass through the genes in DCPs in order to reach the network extremities.
The shortest path is a method that calculates distances in a network. It consists of the minimum number of edges connecting 2 nodes. In this case we want to know the minimum number of edges connecting 1 node, either DCP gene or not, to a group of nodes: the key drivers Figure S4. For each gene we calculate the shortest path to all key drivers and get the minimum value. Then we compare the minimum shortest path to key drivers coming from DCP genes and the remaining genes. Figure 2A shows that the minimum shortest path to key drivers tend to be smaller when originated in DCP genes.

[image: ]
Figure S4. In this example we show how to calculate the distance (length of shortest path) between the gene G2 and group of genes D1, D2, D3, D4 (nodes in red).

Bi-partite Betweenness Centrality
Showing DCP proximity to key drivers is indicative for their possible influence in the network information flow. Now that we know DCP tend to be near key drivers, we need to verify if a majority of paths would from key drivers to peripheral genes go through them. Betweenness Centrality measures the node’s centrality in a network by counting the number of shortest paths from all vertices to all other vertices that pass through that node. A gene with high betweenness centrality has a great influence on the transfer of signal through the network Figure S5.
However we are interested in the signal passing from key drivers throughout the network. For this reason we decided to apply the measure previously developed by our lab [6] called Bi-partite Betweenness Centrality. It measures the amount of shortest path going from all genes in one group of vertices to all genes in a different group of vertices. In our case, the groups of genes are the key drivers and the peripheral genes (genes connected to only one edge). Figure 2B illustrates a comparison of boxplots of bi-partite betweenness centrality between these two groups concerning DCPs and the rest (non DCPs, non-key drivers, non-peripheral). We can observe that the bi-partite betweenness centralities of DCPs are concentrated in higher values than the rest. Mann-Whitney test gave us a p-value of 7.868 X 10-5 which gives us evidence that the distribution of Bi-Partite Betweenness Centrality in DCP genes is really higher.
[image: ]
Figure S5. Here we explain how to calculate bi-partite betweenness centrality (bc) between groups A and B. Note that the node D has bigger bc because all shortest paths connecting nodes in group A to nodes in group B pass through the node D. 
Permutation analysis
To confirm that these high values of Bi-Partite Betweenness Centrality are not random we performed a permutation analysis. It was done in the following way:
1) Calculate the difference between the mean of bipartite betweenness centrality for DCP genes and for the rest of the genes. We will call it the reference value.
2) Randomly select 14 genes out of all genes (permutation) and calculate the difference between the mean of bipartite betweenness centrality for the randomly selected genes and for the rest of the genes. 
3) Repeat step 2 ten thousand times.
4) Plot the histogram of the mean differences from step 3 along with the reference value (step 1)
5) Repeat Steps 1-4 for median, first and third quartiles.
If the reference value for a parameter is located to the right of the histogram then we have evidence that this parameter is higher for DCP genes then for a random sample from the population of bi-partite betweenness centrality values. If this happens for all graphs, then we can say that DCP genes present values of bi-partite betweenness centrality entirely concentrated in higher values then the rest of the genes. Figure S56 illustrates our results for cervical cancer datasets.


Figure S2. Figures showing the histogram of the difference between the values of a parameter (mean, median. 1st quartile and 3rd quartile) from permutation samples of betweenness centrality to the value of the same parameter in the population betweenness centrality data. Note that in all histograms the difference of a parameter of betweenness centrality between the original DCG sample and the population (red line) is situated extremely to the right which shows us that the betweenness centrality amongst only DCG are concentrated in higher values compared to the other genes.
Figure S56. Figures showing the histogram of the difference between the values of a parameter (mean, median. 1st quartile and 3rd quartile) from permutation samples of betweenness centrality to the value of the same parameter in the population betweenness centrality data. Note that in all histograms the difference of a parameter of betweenness centrality between the original DCG sample and the population (red line) is situated extremely to the right which shows us that the betweenness centrality amongst only DCG are concentrated in higher values compared to the other genes.

Experimental settings
Evaluation of siRNA efficacy in knocking down the gene targets.
ME180 cell line was obtained from V. Koneti Rao, M.D, National Institute of Health (https://www.niaid.nih.gov/labsandresources/labs/aboutlabs/li/moleculardevelopmentimmunesystemsection/alpsunit/Pages/ALPSUnit.aspx). It was cultured in RPMI medium with 10% FBS and 1% Penicillin-Streptomycin added. The cells were seeded at density 4000 cells per well in 96 F-bottom plates (seeding procedure was done according to ATCC protocol for ME180 cell line) and with cell culture media 200 ul per well. 24 hours after seeding, cells were transfected with one of the three siRNA:
	Target
	Supplier
	Supplier ID

	FGFR2
	ThermoFisher
	s5173 

	CACYBP
	ThermoFisher
	s25819

	Non-targeting siRNA
	Dharmacon
	D-001810-01-05



Before transfection, 100 uL of media was taken from each well. Transfection procedure was done according to Lipofectamine RNAiMAX Reagent protocol (Protocol Pub. No. MAN0007825 Rev. 1.0). 3pM of siRNA per well and Lipofectamine 0.6 uL per well were delivered in 20uL. 80 uL of fresh cell culture media was added to each well.
Cells were collected 72 h after transfection using Lysis buffer from RNeasy Mini Kit (QIAGEN). RNA extraction was done using RNeasy Mini Kit (QIAGEN) according to the manufacturer’s protocol (no Dnase treatment step was done). Concentrations of RNA measured with Qubit RNA BR Assay Kit. cDNA was done using Bio-Rad iScript cDNA Kit according to the manufacturer’s protocol.
Quantitative Real-Time PCR was done for the samples using QuantiFast SYBR Green PCR Kit and GAPDH as a control gene. Primers for the targets you can see in the table below:
	Target
	Forward/Reverse
	Primer sequence (5' -> 3')

	FGFR2
	Forward
	AACAGTTTCGGCTGAGTCCAG

	FGFR2
	Reverse
	GCCCAGTGTCAGCTTATCTCTT

	CACYBP
	Forward
	CTCTGTGGAAGGCAGTTCAAA

	CACYBP
	Reverse
	TCAGGTAATCCCACCTTGTGTT

	GAPDH
	Forward
	GGAGCGAGATCCCTCCAAAAT

	GAPDH
	Reverse
	GGCTGTTGTCATACTTCTCATGG



Scripts
Local Partial Correlation (R script for calculation)

suppressMessages(library("parallel"))
suppressMessages(library("foreach"))
suppressMessages(library("doParallel"))


### Functions ###

filter.rows <- function(x, rows, fun=sd){
  rows <- min(rows, nrow(x))
  val <- apply(x, 1, fun)
  sel.rows <- order(val, decreasing=TRUE)[1:rows]
  return(x[sel.rows, ])}

just.filter <- function(x, percent, maxRows){
  res <- filter.rows(filter.prop(x, percent), maxRows)
  return(res)}

# Calculate Pearson correlation (upper triangle) and its p-value (lower triangle).
cor.prob = function(X, dfr = nrow(X) - 2) {
  R = cor(X)
  above = row(R) < col(R)
  r2 = R[above]^2
  Fstat = r2 * dfr / (1 - r2)
  #Probability of the F distribution
  R[above] = 1 - pf(Fstat, 1, dfr) 
  R}


# alpha=0.01, pvalue threshold for correlation. 
#It defines the starting adjacency matrix matRoXY.

calcLPC <- function(data, nLim, porc=.7, alpha=0.01, save=TRUE, numOfCores=NA) {
  print(paste("alpha =", alpha))
  nCores = detectCores() - 1
  cl = makeCluster(nCores)
  registerDoParallel(cl, cores = detectCores() - 1)

  sampleNames <- toupper(names(data))
  sampleNames <- gsub("[_,.,;,-,,|,/,\\].*", "", sampleNames)
  names(data) <- sampleNames

  if (nLim != -1) {
    data <- just.filter(data, porc, nLim)
    print("filtering")
  } else {
    print("NOT filtering")
  }
  dim(data)
  
  #Gene expression data (p x n), p variables and n samples
  #X=as.matrix(read.table(file = "your_data.txt", sep = "", stringsAsFactors=F))
  
  X=t(data)
  p = ncol(X)
  n = nrow(X) 
  
  #Warning for the case n >= p.
  if(p <= n){
    print("nothing to do: n > p.")
    return(FALSE)
  }
  
  #Calculate the sample covariance
  covX = cov(X)
  
  #Calculates the sample correlation
  corX = cor(X)

  pvalcor = cor.prob(X)
  
  # New empty matrix
  matRoXY = matrix(0, ncol = p, nrow = p)
  colnames(matRoXY) = colnames(X)
  
  #Fill the matrix matRoXY with correlation from X
  # If alpha = 1, preserve all values of correlationa,
  # else, preserve values of correlation which p-value < alpha.
  if (alpha==1) {
    for(i in 1:(p-1)) {
      for(j in (i+1):p) {
        matRoXY[i,j] = corX[i,j]
        matRoXY[j,i] = matRoXY[i,j]
      }
    }
  } else {
    for(i in 1:(p-1)) {
      for(j in (i+1):p) {
        matRoXY[i,j] = ifelse(pvalcor[i,j] < alpha, corX[i,j], 0)
        matRoXY[j,i] = matRoXY[i,j]
      }
    }
  }
  
  #Fills with zeros the NA entries.
  matRoXY[is.na(matRoXY)] = 0

  # igraph function (creates an igraph object from the adjacency matrix)
  g1 = graph.adjacency(matRoXY, mode = ("undirected"), weighted = TRUE)
  
  #Set the vertices names to the sequence 1:p.
  V(g1)$name = c(seq(1:p))
  
  #Accessing edges.
  edges = get.adjlist(g1)
  totEdg = unlist(edges)

  #Generate a matrix with 99 in all positions (not to get confused with p-values)
  Ap = matrix(99,ncol=ncol(X),nrow=ncol(X))
  
  #Maximum number of neighbors is equal to the sample size.
  nViz = n
  t0 = Sys.time()
  
  lpcData = foreach(k = 1:ncol(X), .packages = c("igraph", "corpcor"), .combine = rbind) %dopar% {

    #Get values from the list "edges"
    #Position where the elements is different from zero.
    vertices = edges[[k]]
    'print(k)
    print(vertices)
    print(length(vertices))
    print("-----------")'
    
    #Will pass to the line of the matrix
    if (length(vertices) > 0) {  
      for (j in 1:length(vertices))
      {
  if(vertices[j] > k && matRoXY[k, vertices[j]]!=0)
        {
          i1 = as.character(k)
          j1 = as.character(vertices[j])
          
          #Get the neighbors of a pairo of nodes.
          vizlist = graph.neighborhood(g1, 1, nodes = c(i1, j1), mode=c("all"))
    viz = sort(as.integer(unique(c(V(vizlist[[1]])$name, V(vizlist[[2]])$name)),decreasing=TRUE))
          
          # Downsizing the number of neighbors in case we have we still 
          # have more neighbors than observations.
    if(length(viz) >= nViz)
          {
      #Get the biggest absolute value of correlation from the two 
      #selected nodes.
      cor.maiores.i = sort(abs(matRoXY[viz, c(k)][-k]), decreasing = TRUE)[1:(nViz/2)]
            cor.maiores.j = sort(abs(matRoXY[viz, c(vertices[j])][-(vertices[j])]), 
                                 decreasing = TRUE)[1:(nViz/2)]
            
            #Remove the zeros
            cor.maiores.i = cor.maiores.i[cor.maiores.i > 0]
            cor.maiores.j = cor.maiores.j[cor.maiores.j > 0]
            
      #Selecting n/2 vertices with highest correlations
            cor.maiores = sort(abs(unique(c(cor.maiores.j,cor.maiores.i))), decreasing =
                          TRUE)[1:(nViz/2)]
            
      cor.maiores.i = cor.maiores.i[cor.maiores.i %in% cor.maiores]
            cor.maiores.j = cor.maiores.j[cor.maiores.j %in% cor.maiores]
            
            majI = cor.maiores.i[! is.na(cor.maiores.i)]
            majJ = cor.maiores.j[! is.na(cor.maiores.j)]
            
     posicao.i = sapply(majI, function(valmajI){which(abs(matRoXY[ ,c(k)]) == valmajI,
                  useNames = TRUE)})
            posicao.i = unlist(posicao.i)

            posicao.j = sapply(majJ, function(valmajJ){which(abs(matRoXY[ ,vertices[j]]) ==
                        valmajJ, useNames = TRUE)})
            posicao.j = unlist(posicao.j)

            if((length(posicao.i)==0) & (length(posicao.j)==0)) next
            
            if(length(posicao.j)==0){
              viz = sort(c(k, as.numeric(vertices[j]) , posicao.i))
            } else {
              if (length(posicao.i)==0) viz <- sort(c(k, as.numeric(vertices[j]) , posicao.j))
              else   viz = unique(sort(c(k, as.numeric(vertices[j]), c(posicao.i, posicao.j))))
            }
          }
          
          lcl = length(viz)
          
          #Selecting neighbor-and-pair covariance matrix
          Csub = covX[viz,viz]

    # Calcultaes  the partial correlation from 
    # neighbor-and-pair covariance matrix
          corr.inv = cor2pcor(Csub)
          rownames(corr.inv) = viz
          colnames(corr.inv) = viz

    Csub2 = Csub
          dfr = n-2
          R = corr.inv
          above = row(Csub2) < col(Csub2)
          r2 = R[above]^2
          Fstat = r2 * dfr / (1 - r2)
          R[above] = 1 - pf(Fstat, 1, dfr) 
          
          # Upper triangle lpcData = partial correaltion
          # Lower triangle lpcData = p-value
    Ap[k,vertices[j]] = R[i1,j1]
          Ap[vertices[j],k] = R[j1,i1]
          
          
        }
      }  # loop
      
    }
    Ap[k,]
  }
  
  ti <- Sys.time()
  print(paste( as.numeric( round(ti-t0,2), units = "secs")/60, "min, p =", p, "tempo/p=", round(as.numeric(ti-t0, units = "secs")/p,2), "s/node"))
  
  colnames(lpcData) = rownames(data)
  rownames(lpcData) = rownames(data)

  if (save) {
    writeLpcFile(lpcData, porc, pGenes=p)
  }

  
  stopCluster(cl)
  return(lpcData)
}
qRT PCR set up: sample was heated to 95°C, followed by 40 cycles of 95°C for 10 sec and 60°C for 30 sec. 

Evaluation of cell growth after knock down of gene targets.
CACYBP is up-regulated in tumor tissue, as compared to normal tissue (Figure 3B).  Consequently, if CACYBP has regulatory potential, as predicted by our analysis, it should function as an oncogene promoting cell proliferation. Therefore, the knockdown of this gene should result in a decrease of cell growth/survival. Since FGFR2 was found down-regulated in cervical carcinomas (Figure 3B) its potential regulatory role would be as a tumor suppressor. Therefore, the knockdown of this gene is expected to increase cell growth. 
Cell growth was evaluated using xCelligence system (The RTCA DP Instrument) using manufacturer’s protocol. ME180 was cultured in RPMI media with 10% FBS and 1% Penicillin-Streptomycin added. The cells were seeded at density 4000 cells per well (E-Plate 16) in 200 uL of cell culture media.
24 hours after seeding, the experiment was paused for transfecton. Before transfection, 100 uL of media was taken from each well. Transfection procedure was done according to Lipofectamine RNAiMAX Reagent protocol (Protocol Pub. No. MAN0007825 Rev. 1.0). 3pM of siRNA per well and Lipofectamine 0.6 uL per well were delivered in 20uL; 80 uL of fresh cell culture media was added to each well. Plate was placed back in the slot and cell growth was evaluated for another 72 h.
Cell index normalization.
To evaluate cell growth rate cell index was transformed into Inhibition index in two steps:
1. Cell indexes for all wells were exported to the excel file. For each treatment (including non-targeting siRNA transfected wells) we extracted cell index average for all wells at 20 h after seeding (Cell Index Before Treatment) and at 96 h after seeding (Cell Index After Treatment). To normalize cell index to initial cell number differences for each of the treatments we used the following formula:
After/Before Treatment Normalized Cell Index (A/B Index)
=


2. In next step we normalized each treatment with targeting siRNA to treatment with non-targeting siRNA. For this purpose in each experiment A/B Index from treatment (siRNA targeting either FGFR2 or CACYBP) was normalized to A/B Index from control treatment using the following formula:

Inhibition Index
=


Final evaluation of growth was done according to the value of Inhibition Index:
>0 – there is a decrease in growth;
  0 – no difference between treated with targeting and treated with non-targeting siRNA;
<0 – there is a growth after treating with targeting siRNA.
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